CS478 - Machine Learning, Pattern Recognition and Data Mining. Tentative Syllabus - Spring 2001

M = Mithcel, D = Duda, Hart & Stork, C = Cover & Thomas

- Introduction
 - M chap. 1, D chap. 1 (Week 1)
 - What is machine learning?
- Concept learning M chap. 2 (Week 1)
- Non-metric methods
 D chap. 8, M chap. 3 (Week 2)
 - Decision trees
 - Strings based methods
 - Grammatical methods
 - Rule-based methods
- Bayesian Learning
 - **D** chap. **2-3**, **M** chap. **6** (Weeks 3-6)
 - Bayesian decision theory
 - * Continuous features
 - * Discrete features
 - * Bayesian belief networks
 - ML and Bayesian Parameter Estimation
 - * MAP and ML learners
 - * Naive Bayes
 - * Bayes optimal classifier
 - * Gibbs algorithm
 - * Sufficient statistics
 - * The EM algorithm
 - * Hidden Markov models
- Nonparametric Techniques
 - D chap. 4, M chap. 8 (Week 7)
 - Density Estimation
 - Parzen Windows
 - The nearest neighbor algorithm
- Linear discriminant functions
 - **D** chap. **5**, M chap. **4** (Weeks 8-9)
 - LD functions and decision surfaces
 - The perceptron function

- Relaxation and MSE procedures
- Support vector machines
- Multilayer neural networks
 D chap. 6, M chap. 4 (Weeks 9-10)
 - Feedforward operation
 - Backpropagation algorithm
 - Error surfaces
- Stochastic methods

D chap. **7**, **M** chap. **9** (Week 10-11)

- Simulated annealing
- Genetic algorithms
- Genetic programming
- Algorithm-independent machine learning **D** chap. 9, M chap. 5 (Week 11)
 - Model selection
 - MDL principle
 - Overfitting
 - Evaluation of learning systems
 - Combining classifiers
- Unsupervised Learning
 D chap. 10 (Weeks 12-13)
 - K-means clustering
 - Unsupervised Bayesian learning
 - Kohonen networks
 - Hierarchical clustering
 - Problems of dimensionality
 - Component analysis
 - Multidimensional scaling
- Computational Learning Theory
 M chap. 7 (Week 14)
 - PAC learning
 - VC dimension
 - Mistake bounds
- Basic concepts in Information Theory C (Week 14)