Concept Learning

Concept learning. Automatically inferring a boolean-valued function from training examples of its input and output.

<table>
<thead>
<tr>
<th>Sky</th>
<th>Temp</th>
<th>Humid</th>
<th>Wind</th>
<th>Water</th>
<th>Forecast</th>
<th>EnjoySpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Warm</td>
<td>Normal</td>
<td>Strong</td>
<td>Warm</td>
<td>Same</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Warm</td>
<td>High</td>
<td>Strong</td>
<td>Warm</td>
<td>Same</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cold</td>
<td>High</td>
<td>Strong</td>
<td>Warm</td>
<td>Change</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Warm</td>
<td>High</td>
<td>Strong</td>
<td>Cool</td>
<td>Change</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Hypothesis Spaces

- Many hypothesis representations are possible.
- For now, we will assume that a hypothesis must be represented as a conjunction of constraints on attribute values.
- We will adopt the following conventions:
 - a specific value (e.g., Water = Warm)
 - don’t care (e.g., Water = ?)
 - no value allowed (e.g., Water=∅)

For example,

\[
\begin{array}{ccccccc}
\text{Sky} & \text{Air Temp} & \text{Humid} & \text{Wind} & \text{Water} & \text{Forecast} \\
\langle \text{Sunny} \rangle & ? & ? & \text{Strong} & ? & \text{Same} \\
\end{array}
\]
Prototypical Concept Learning Task

- **Given:**

 - Instances X: Possible days, each described by the attributes *Sky, AirTemp, Humidity, Wind, Water, Forecast*

 - Target function c: $EnjoySport : X \rightarrow \{0, 1\}$

 - Hypotheses H: Conjunctions of literals. E.g.

 $\langle ?, Cold, High, ?, ?, ? \rangle$.

 - Training examples D: Positive and negative examples of the target function, $\langle x_1, c(x_1) \rangle, \ldots \langle x_m, c(x_m) \rangle$

- **Determine:** A hypothesis h in H such that $h(x) = c(x)$ for all x in D.
The Inductive Learning Hypothesis

A hypothesis h is **consistent** with a set of training examples D of target concept c:

$$\text{Consistent}(h, D) \equiv (\forall (x, c(x)) \in D) \ h(x) = c(x)$$

Most machine learning algorithms assume that new examples will be drawn from the same population as the training examples.

Performance may be terrible if this is not true!

The inductive learning hypothesis: Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over other unobserved examples.
Instance, Hypotheses, and More-General-Than

Instances X

Instances X

Hypotheses H

$x_1 = <\text{Sunny, Warm, High, Strong, Cool, Same}>$

$x_2 = <\text{Sunny, Warm, High, Light, Warm, Same}>$

$h_1 = <\text{Sunny, ?, ?, Strong, ?, ?>$

$h_2 = <\text{Sunny, ?, ?, ?, ?, ?>$

$h_3 = <\text{Sunny, ?, ?, ?, Cool, ?>$

$h_1 = <\text{Sunny, ?, ?, Strong, ?, ?>$

$h_2 = <\text{Sunny, ?, ?, ?, ?, ?>$

$h_3 = <\text{Sunny, ?, ?, ?, Cool, ?>$
FIND-S: Finding maximally specific hypotheses

Consider the following algorithm for generating maximally specific hypotheses:

1. Initialize h to the most specific hypothesis in H

2. For each positive training instance x

 - For each attribute constraint a_i in h

 - If the constraint a_i in h is satisfied by x

 - Then do nothing

 - Else replace a_i in h by the next more general constraint that is satisfied by x

3. Output hypothesis h
Instances X

- $x_1 = \langle\text{Sunny Warm Normal Strong Warm Same}\rangle$, +
- $x_2 = \langle\text{Sunny Warm High Strong Warm Same}\rangle$, +
- $x_3 = \langle\text{Rainy Cold High Strong Warm Change}\rangle$, -
- $x_4 = \langle\text{Sunny Warm High Strong Cool Change}\rangle$, +

Hypotheses H

- $h_0 = \langle\emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset\rangle$
- $h_1 = \langle\text{Sunny Warm Normal Strong Warm Same}\rangle$
- $h_2 = \langle\text{Sunny Warm ? Strong Warm Same}\rangle$
- $h_3 = \langle\text{Sunny Warm ? Strong Warm Same}\rangle$
- $h_4 = \langle\text{Sunny Warm ? Strong ? ?}\rangle$
Problems with FIND-S

- What if there is noise in the training data?
- What if training data is inconsistent?
- Why prefer the most specific hypothesis?
- Has the learner converged to the correct hypothesis?
- May be several maximally specific consistent hypotheses.
Version Spaces

The version space, $V S_{H,D}$, with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D:

$$V S_{H,D} \equiv \{ h \in H | Consistent(h, D) \}.$$

- The General boundary, G, of version space $V S_{H,D}$ is the set of its maximally general members
- The Specific boundary, S, of version space $V S_{H,D}$ is the set of its maximally specific members
- Every member of the version space lies between these boundaries

$$V S_{H,D} = \{ h \in H | (\exists s \in S)(\exists g \in G)(g \geq h \geq s) \}$$

where $x \geq y$ means x is more general or equal to y
Example Version Space

\[S: \{ \langle \text{Sunny, Warm, }, ?, \text{Strong, }, ?, \rangle \} \]

\[\langle \text{Sunny, }, ?, ?, \text{Strong, }, ?, \rangle \quad \langle \text{Sunny, Warm, }, ?, ?, ?, \rangle \quad \langle ?, \text{Warm, }, ?, \text{Strong, }, ?, \rangle \]

\[G: \{ \langle \text{Sunny, }, ?, ?, ?, ?, \rangle, \langle ?, \text{Warm, }, ?, ?, ?, \rangle \} \]
The Candidate Elimination Algorithm

\[G \leftarrow \text{maximally general hypotheses in } H \]
\[S \leftarrow \text{maximally specific hypotheses in } H \]
For each training example \(d \), do

- If \(d \) is a positive example
 - Remove from \(G \) any hypothesis inconsistent with \(d \)
 - For each hypothesis \(s \) in \(S \) that is not consistent with \(d \)
 * Remove \(s \) from \(S \)
 * Add to \(S \) all minimal generalizations \(h \) of \(s \) such that
 1. \(h \) is consistent with \(d \), and
 2. some member of \(G \) is more general than \(h \)
 * Remove from \(S \) any hypothesis that is more general than another hypothesis in \(S \)
• If d is a negative example

 – Remove from S any hypothesis inconsistent with d

 – For each hypothesis g in G that is not consistent with d

 * Remove g from G

 * Add to G all minimal specializations h of g such that

 1. h is consistent with d, and
 2. some member of S is more specific than h

 * Remove from G any hypothesis that is less general than another hypothesis in G
An Example

$S_0 := \{\emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset\}$

$G_0 := \{\{?, ?, ?, ?, ?, ?\}\}$
Reconsider Problems with FIND-S

- What if there is noise in the training data?
- What if training data is inconsistent?
- Why prefer the most specific hypothesis?
- Has the learner converged to the correct hypothesis?
- May be several maximally specific consistent hypotheses.

CEA will converge toward the correct target concept, provided:

1. No errors in training examples.

2. There is some hypothesis in H that correctly describes the target concept.
Using Partially Learned Concepts

\[S: \{ <\text{Sunny, Warm, ?}, \text{Strong, ?}, \text{?}> \} \]

\[G: \{ <\text{Sunny, ?}, \text{?, ?, ?}, \text{>, <?, Warm, ?}, \text{?, ?}, \text{>, <?, Warm, ?}, \text{?, ?, ?}> \} \]

- \(<\text{Sunny Warm Normal Strong Cold Change}> \)
- \(<\text{Rainy Cold Normal Light Warm Same}> \)
- \(<\text{Sunny Warm Normal Light Warm Same}> \)
- \(<\text{Sunny Cold Normal Strong Warm Same}> \)