Genetic Algorithms

Inspired by biological processes that produce genetic change in populations of individuals.

Genetic algorithms (GAs) are adaptive search procedures that usually include three basic elements:

1. A Darwinian notion of fitness: the most fit individuals have the best chance of survival and reproduction.
2. Mating operators: individuals contribute their genetic material to their children.
3. Mutation: individuals are subject to random changes in their genetic material.

Slide CS478–1

Learning through populations

- Many learning algorithms commit to a single hypothesis at any one point in time.
- Genetic algorithms maintain a population of hypotheses.
- Each hypothesis is evaluated using a fitness function. The fitness scores force individuals to compete for the privilege of survival and reproduction.
- Genetic algorithms are typically performance-oriented. The fitness of a hypothesis is often measured by the performance of the hypothesis on a set of tasks.

Slide CS478–2
Genetic algorithms as search

- Genetic algorithms are local heuristics search algorithms.
- “Weak” (i.e. general-purpose) method.
- Especially good for problems that have large and poorly understood search spaces.
- Genetic algorithms use a randomized parallel beam search to explore the hypothesis space.
- You must be able to define a good fitness function, and of course, a good hypothesis representation.

Slide CS478–3

Binary string representations

- Hypotheses are usually represented using bit strings.
- Hypotheses represented can be arbitrarily complex.
- E.g. each attribute is allocated a specific portion of the string, which encodes the attribute values that are acceptable.
- Each bit encodes whether a single attribute value is acceptable or not. So you need N bits to represent N attribute values.
- Why not use binary-valued encoding (e.g., 2 bits could represent 4 values)?
- Bit string representation allows crossover operation to change multiple values. Crossover and mutation can also

Slide CS478–4
produce previously unseen values.

Representing Hypotheses

Bit sequences can also represent conjunctions of constraints on attribute values. For example:

\[(Outlook = Overcast \lor Rain) \land (Wind = Strong)\]

\[
\begin{array}{ll}
\text{Outlook} & \text{Wind} \\
011 & 10 \\
\end{array}
\]

Bit sequences can also represent rules, or more complicated structures. For example:

IF Wind = Strong THEN Ski? = yes
\[\Rightarrow \text{Outlook} \quad \text{Wind} \quad \text{Ski?} \]
\[
\begin{array}{ccc}
0 & 1 & 1 \\
10 & 10 & 1
\end{array}
\]

Slide CS478–7

\[
\text{GA}(\text{Fitness, Fitness_threshold, p, r, m})
\]

- \(P \leftarrow \) randomly generate \(p \) hypotheses
- For each \(h \) in \(P \), compute \(\text{Fitness}(h) \)
- While \([\text{max}_h \text{Fitness}(h)] < \text{Fitness_threshold} \)
 1. Probabilistically select \((1 - r)p \) members of \(P \) to add to \(P_s \)
 2. Probabilistically choose \(\frac{r\cdot m}{2} \) pairs of hypotheses from \(P \).
 For each pair, \(\langle h_1, h_2 \rangle \), apply \text{crossover} and add the offsprings to \(P_s \)
 3. **Mutate** \(m \cdot p \) random members of \(P_s \)
 4. \(P \leftarrow P_s \)
 5. For each \(h \) in \(P \), compute \(\text{Fitness}(h) \)
- Return the hypothesis in \(P \) with the highest fitness.

Slide CS478–8
Selecting Most Fit Hypotheses

Hypotheses are chosen probabilistically for survival and crossover based on fitness proportionate selection:

\[
\Pr(h) = \frac{\text{Fitness}(h)}{\sum_{j=1}^{p} \text{Fitness}(h_j)}
\]

Other selection methods include:

- **Tournament Selection**: 2 hypotheses selected at random. With probability \(p \), the most fit is selected. With probability \((1 - p) \), the less fit is selected.

- **Rank Selection**: The hypotheses are sorted by fitness and the probability of selecting a hypothesis is proportional to its rank in the list.
Crossover Operators

Single-point crossover:

\[
\text{Parent A: } \begin{array}{cccccccc}
1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
\end{array} \begin{array}{c}
0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
\end{array}
\]

\[
\text{Child AB: } \begin{array}{cccccccc}
1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
\end{array} \begin{array}{c}
0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
\end{array}
\]

\[
\text{Child BA: } \begin{array}{cccccccc}
0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
\end{array} \begin{array}{c}
0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
\end{array}
\]

Slide CS478–11

Two-point crossover:

\[
\text{Parent A: } \begin{array}{cccccccc}
1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
\end{array} \begin{array}{c}
0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
\end{array}
\]

\[
\text{Child AB: } \begin{array}{cccccccc}
1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
\end{array} \begin{array}{c}
0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
\end{array}
\]

\[
\text{Child BA: } \begin{array}{cccccccc}
0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
\end{array} \begin{array}{c}
0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
\end{array}
\]

Slide CS478–12
Uniform Crossover

Uniform crossover:

Parent A: 1 0 0 1 0 1 1 1 0 1
Parent B: 0 1 0 1 1 1 0 1 1 0

Child AB: 1 1 0 1 1 1 1 1 0 1
Child BA: 0 0 0 1 0 1 0 1 1 0

Mutation

Mutation: randomly toggle one bit

Individual A: 1 0 0 1 0 1 1 1 0 1
Individual A: 1 0 0 0 0 1 1 1 0 1

Slide CS478–13

Slide CS478–14
Mutation

- The mutation operator introduces random variations, allowing hypotheses to jump to different parts of the search space.
- What happens if the mutation rate is too low?
- What happens if the mutation rate is too high?
- A common strategy is to use a high mutation rate when learning begins but to decrease the mutation rate as learning progresses.

Learning illegal structures

Consider the traveling salesman problem, where an individual represents a potential solution. The standard crossover operator can produce illegal children:

<table>
<thead>
<tr>
<th>Parent A:</th>
<th>ITH</th>
<th>Pitt</th>
<th>Chicago</th>
<th>Denver</th>
<th>Boise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent B:</td>
<td>Boise</td>
<td>Chicago</td>
<td>ITH</td>
<td>Phila</td>
<td>Pitt</td>
</tr>
<tr>
<td>Child AB:</td>
<td>ITH</td>
<td>Pitt</td>
<td>Chicago</td>
<td>Phila</td>
<td>Pitt</td>
</tr>
<tr>
<td>Child BA:</td>
<td>Boise</td>
<td>Chicago</td>
<td>ITH</td>
<td>Denver</td>
<td>Boise</td>
</tr>
</tbody>
</table>
Two solutions:

1. define special genetic operators that only produce
 syntactically and semantically legal hypotheses.
2. ensure that the fitness function returns extremely low fitness
 values to illegal hypotheses.

Applications: Parameter Optimization

- Parameter optimization problems are well-suited for GAs. Each individual represents a set of parameter values and the GA tries to find the set of parameter values that achieves the best performance.
- The crossover operator creates new combinations of parameter values and, using a binary representation, both the crossover and mutation operators can produce new values.
- Many learning systems can be recast as parameter optimization problems. For example, most neural networks use a fixed architecture so learning consists entirely of adjusting weights and thresholds.
GABIL [DeJong et al. 1993]

Learn disjunctive set of propositional rules

Fitness:

\[\text{Fitness}(h) = (\text{correct}(h))^2 \]

Representation:

IF \(a_1 = T \land a_2 = F \) THEN \(c = T \); IF \(a_2 = T \) THEN \(c = F \)

represented by

\[
\begin{array}{ccc}
 a_1 & a_2 & c \\
 a_1 & a_2 & c \\
 10 & 01 & 1 \\
 11 & 10 & 0 \\
\end{array}
\]

Genetic operators: ???

Crossover with Variable-Length Bitstrings

Start with

\[
\begin{array}{ccc}
 a_1 & a_2 & c \\
 a_1 & a_2 & c \\
 h_1 : & 10 & 01 \\
 h_2 : & 01 & 11 \\
\end{array}
\]

1. choose crossover points for \(h_1 \), e.g., after bits 1, 8

2. now restrict points in \(h_2 \) to those that produce bitstrings with well-defined semantics, e.g., \(\langle 1, 3 \rangle, \langle 1, 8 \rangle, \langle 6, 8 \rangle \).
if we choose $\langle 1, 3 \rangle$, result is

\[
\begin{array}{ccc}
 a_1 & a_2 & c \\
 h_3 : & 11 & 10 & 0 \\

 a_1 & a_2 & c & a_1 & a_2 & c & a_1 & a_2 & c \\
 h_4 : & 00 & 01 & 1 & 11 & 11 & 0 & 10 & 01 & 0 \\
\end{array}
\]

Slide CS478–21

GABIL Extensions

Add new genetic operators, also applied probabilistically:

1. AddAlternative: generalize constraint on a_i by changing a 0 to 1

2. DropCondition: generalize constraint on a_i by changing every 0 to 1

And, add new field to bitstring to determine whether to allow these

\[
\begin{array}{ccccccc}
 a_1 & a_2 & c & a_1 & a_2 & c & AA & DC \\
 01 & 11 & 0 & 10 & 01 & 0 & 1 & 0 \\
\end{array}
\]

So now the learning strategy also evolves!

Slide CS478–22
Genetic Programming

In **Genetic Programming**, programs are evolved instead of bit strings. Programs are often represented by trees. For example:

\[\sin(x) + \sqrt{x^2 + y} \]

Crossover in genetic programming

Slide CS478–23
Goal: spell UNIVERSAL

Terminals:

- CS (“current stack”) = name of the top block on stack, or F.
- TB (“top correct block”) = name of topmost correct block on stack
- NN (“next necessary”) = name of the next block needed above TB in the stack

Primitive functions:

- (MS x): (“move to stack”), if block x is on the table, moves x to the top of the stack and returns the value T. Otherwise, does nothing and returns the value F.
- (MT x): (“move to table”), if block x is somewhere in the stack, moves the block at the top of the stack to the table and returns the value T. Otherwise, returns F.
- (EQ x y): (“equal”), returns T if x equals y, and returns F otherwise.
- (NOT x): returns T if $x = F$, else returns F
- (DU x y): (“do until”) executes the expression x repeatedly until expression y returns the value T
Learned Program

Trained to fit 166 test problems
Using population of 300 programs, found this after 10 generations:

(EQ (DU (MT CS)(NOT CS)) (DU (MS NN)(NOT NN)))

Genetic Programming

More interesting example: design electronic filter circuits

- Individuals are programs that transform beginning circuit to final circuit, by adding/subtracting components and connections
- Use population of 640,000, run on 64 node parallel processor
- Discovers circuits competitive with best human designs
Biological Evolution

Lamarck (19th century)

- Believed individual genetic makeup was altered by lifetime experience
- But current evidence contradicts this view

What is the impact of individual learning on population evolution?

Slide CS478–29

Baldwin Effect

Assume

- Individual learning has no direct influence on individual DNA
- But ability to learn reduces need to “hard wire” traits in DNA – can perform local search!

Then

- Ability of individuals to learn will support more diverse gene pool
- More diverse gene pool will support faster evolution of gene pool

→ individual learning (indirectly) increases rate of evolution

Slide CS478–30
Computer Experiments on Baldwin Effect
[Hinton and Nowlan, 1987]

Evolve simple neural networks:

- Some network weights fixed during lifetime, others trainable
- Genetic makeup determines which are fixed, and their weight values

Results:

- With no individual learning, population failed to improve over time
- When individual learning allowed

- Early generations: population contained many individuals with many trainable weights
- Later generations: higher fitness, while number of trainable weights decreased