Evaluating Hypotheses

Why bother?

- Want to decide whether or not to use it.
- Integral part of many learning algorithms, e.g., post-pruning.
- Clients want to know the accuracy of the learned hypothesis.

Given only a limited set of data, two key difficulties arise:

Bias in the estimate: Accuracy on training data is an optimistically biased estimate of the accuracy over future examples. Estimate accuracy on blind test set.

Variance in the estimate: Accuracy can vary from true accuracy depending on the makeup of the test examples.

Slide CS478–1

Evaluating Hypotheses

1. Methods for evaluating learned hypotheses
2. Methods for comparing the accuracy of two hypotheses
3. Methods for comparing the accuracy of two learning algorithms

Slide CS478–2
Definitions

X: space of possible instances

\mathcal{D}: unknown probability distribution that defines the probability of encountering each instance in X.

f: target concept/function

H: hypothesis space

h: hypothesis in H

Two Definitions of Error

The true error of hypothesis h with respect to target function f and distribution \mathcal{D} is the probability that h will misclassify an instance drawn at random according to \mathcal{D}.

$$ error_{\mathcal{D}}(h) = \Pr_{x \in \mathcal{D}}[f(x) \neq h(x)] $$

The sample error of h with respect to target function f and data sample S is the proportion of examples h misclassifies.

$$ error_S(h) = \frac{1}{n} \sum_{x \in S} \delta(f(x) \neq h(x)) $$

Where $\delta(f(x) \neq h(x))$ is 1 if $f(x) \neq h(x)$, and 0 otherwise.

How well does $error_S(h)$ estimate $error_{\mathcal{D}}(h)$?
Example

Hypothesis h misclassifies 12 of the 40 examples in S

$$\text{error}_S(h) = \frac{12}{40} = .30$$

How good an estimate of $\text{error}_D(h)$ is $\text{error}_S(h)$?

Confidence Intervals

If

- S contains n examples, drawn independently of h and each other
- $n \geq 30$

Then

- With approximately 95% probability, $\text{error}_D(h)$ lies in interval

$$\text{error}_S(h) \pm 1.96 \sqrt{\frac{\text{error}_S(h)(1 - \text{error}_S(h))}{n}}$$

95% confidence interval estimate: $0.30 \pm (1.96)(0.07) = 0.30 \pm 0.14$.
Confidence Intervals

If (1) \(S \) contains \(n \) examples, drawn independently of \(h \) and each other, and (2) \(n \geq 30 \), then

- With approximately \(N\% \) probability, \(\text{error}_D(h) \) lies in
 interval

\[
\text{error}_S(h) \pm z_N \sqrt{\frac{\text{error}_S(h)(1 - \text{error}_S(h))}{n}}
\]

where

<table>
<thead>
<tr>
<th>(N%)</th>
<th>50%</th>
<th>68%</th>
<th>80%</th>
<th>90%</th>
<th>95%</th>
<th>98%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z_N)</td>
<td>0.67</td>
<td>1.00</td>
<td>1.28</td>
<td>1.64</td>
<td>1.96</td>
<td>2.33</td>
<td>2.58</td>
</tr>
</tbody>
</table>

Comparing Hypotheses

Test \(h_1 \) on sample \(S_1 \), test \(h_2 \) on \(S_2 \)

- Given \(h_1 \) and \(h_2 \), we can determine whether the difference in their error rates is meaningful or not.

\[
d = \text{error}_D(h_1) - \text{error}_D(h_2)
\]

- Estimator is the difference between the sample errors:

\[
\hat{d} = \text{error}_{S_1}(h_1) - \text{error}_{S_2}(h_2)
\]
• The variance of this distribution is the sum of the variances of $error_{S_1}(h_1)$ and $error_{S_2}(h_2)$:

$$
\sigma_d^2 \approx \frac{error_{S_1}(h_1)(1 - error_{S_1}(h_1))}{n_1} + \frac{error_{S_2}(h_2)(1 - error_{S_2}(h_2))}{n_2}
$$

• Can compute confidence interval estimate for d:

$$
d \pm z_N \sqrt{\frac{error_{S_1}(h_1)(1 - error_{S_1}(h_1))}{n_1} + \frac{error_{S_2}(h_2)(1 - error_{S_2}(h_2))}{n_2}}
$$

Slide CS478–9

Comparing Learning Algorithms

• We are often interested in comparing the performance of two learning algorithms, L_A and L_B, instead of two specific hypotheses.

• Ideally, we’d like to measure the expected value of the difference in their error:

$$
E_{S \subset D}[error_D(L_A(S)) - error_D(L_B(S))]
$$

where $L(S)$ is the hypothesis output by learner L using training set S from distribution D.

• To estimate this difference, we need to average results over many different training and testing sets.

Slide CS478–10
K-fold Cross Validation

1. Partition data D_0 into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30.

2. For i from 1 to k
 use T_i for the test set, and the remaining data for training set S_i

 $S_i \leftarrow \{D_0 - T_i\}$
 $h_A \leftarrow L_A(S_i), h_B \leftarrow L_B(S_i)$
 $\delta_i \leftarrow \text{error}_{T_i}(h_A) - \text{error}_{T_i}(h_B)$

3. Return the average difference in error: $\tilde{\delta} = \frac{1}{k} \sum_{i=1}^{k} \delta_i$

Slide CS478–11

McNemar’s Test

- For each example $x \in T$ (test set), record how it was classified.
- Construct the following contingency table:

\[
\begin{array}{cc}
 n_{00} & n_{01} \\
 n_{10} & n_{11}
\end{array}
\]

where

Slide CS478–12
- \(n_{00} \) = number of examples misclassified by both \(L_A \) and \(L_B \).
- \(n_{01} \) = number of examples misclassified by \(L_A \), but not by \(L_B \).
- \(n_{10} \) = number of examples misclassified by \(L_B \), but not by \(L_A \).
- \(n_{00} \) = number of examples misclassified by neither \(L_A \) nor \(L_B \).

McNemar’s test is based on a \(\chi^2 \) test for goodness-of-fit that compares the distribution of the observed counts to the counts expected when the learning algorithms have the the same performance.

Slide CS478–13

McNemar’s Test

Contingency table:

<table>
<thead>
<tr>
<th></th>
<th>(n_{00})</th>
<th>(n_{01})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_{10})</td>
<td>(n_{11})</td>
<td></td>
</tr>
</tbody>
</table>

Expected counts:

<table>
<thead>
<tr>
<th></th>
<th>(n_{00})</th>
<th>((n_{01} + n_{10})/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((n_{01} + n_{10})/2)</td>
<td>(n_{11})</td>
<td></td>
</tr>
</tbody>
</table>

If \(\frac{(n_{00} - n_{10})^2}{n_{00} + n_{10}} \) is greater than 3.841459, then the difference in error between \(L_A \) and \(L_B \) is statistically significant at or above the 95\% confidence level.

Slide CS478–14
Summary

- Statistical analysis is important to compare empirical learning results.
- No single procedure for comparing learning methods based on limited data satisfies all the constraints we would like.
- Statistical models rarely fit perfectly the practical constraints in testing learning algorithms when available data is limited.
- They do provide approximate confidence intervals that can be of great help in interpreting experimental comparisons of learning methods.