Decision Trees on Real Problems

Must consider the following issues:

- Multi-class problems
- Alternative splitting criterion
- Noise in the data
- Real-valued attributes
- Missing values
- Attributes with costs

Applying Entropy to Multiple Classes

Thus far we have assumed that the target class is Boolean. More generally, the class can take on c values, then the entropy of S relative to this c-wise classification is defined as:

\[\text{Entropy}(S) = \sum_{i=1}^{c} \left(\frac{|S_i|}{|S|} \log_2 \left(\frac{|S_i|}{|S|} \right) \right) \]

Where \(S_i \) is the proportion of \(S \) belonging to class \(i \).
A Problem with Information Gain

- Biased toward attributes that have many possible values.
 Examples:

 - *Date* attribute: 365 possible values
 - *Name* attribute: 50,000 possible values

- Splits data into (possibly) perfectly classified (albeit small) partitions
- Problem: Not good class predictors.

An Alternative Measure

GainRatio: penalizes attributes with many values by incorporating a term called *SplitInformation*.

SplitInformation measures the entropy of the data with respect to the attribute values, not the class.

\[
\text{SplitInformation}(S, A) \equiv -\sum_{i=1}^{|V|} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}
\]

where \(S_i\) is subset of \(S\) for which \(A\) has value \(v_i \in V\)
GainRatio uses SplitInformation to discourage preference for these attributes.

\[
\text{GainRatio}(S, A) \equiv \frac{\text{Gain}(S, A)}{\text{SplitInformation}(S, A)}
\]

Slide CS478–5

A Problem with Gain Ratio

- SplitInformation can be very small or even zero when \(|S_i| \approx |S|\) for some \(S_i\).
- In this case, GainRatio becomes very large or even undefined, skewing the results.
- To avoid this problem, one approach is to compute the Gain of each attribute. Then for those that have above average Gain, choose the best by applying the GainRatio test. This is the approach used by C4.5.

Slide CS478–6
Overfitting in Decision Trees

Consider adding noisy training example #15:

Sunny, Hot, Normal, Strong, PlayTennis = No

What effect on earlier tree?

```
Overcast
   Sunny Overcast Rain
     Humidity
       High Normal
         Yes No
   Wind
     Strong Weak
       Yes No
```

Slide CS478–7

Overfitting

Overfitting occurs when the learned concept is too specific to the training data. Overfitting can occur for several reasons:

- Noise
- Not enough training examples

In one study of 5 learning tasks, overfitting decreased the accuracy of the decision trees by 10-25%.

Moral: Overfitting is a real problem!

Slide CS478–8
A precise definition

Consider error of hypothesis h over

- training data: $\text{error}_{\text{train}}(h)$
- entire distribution \mathcal{D} of data: $\text{error}_{\mathcal{D}}(h)$

Hypothesis $h \in H$ overfits training data if there is an alternative hypothesis $h' \in H$ such that

$$\text{error}_{\text{train}}(h) < \text{error}_{\text{train}}(h')$$

and

$$\text{error}_{\mathcal{D}}(h') < \text{error}_{\mathcal{D}}(h)$$

Slide CS478–9

Recognizing Overfitting

Slide CS478–10
Avoiding Overfitting

- **Prepruning:** Stop growing the tree when there is not enough data to make reliable decisions, or when the examples are acceptably homogeous

- **Postpruning:** Grow the full decision tree and then remove nodes for which there is not sufficient evidence.

Prepruning: easier and more intuitive
Postpruning: generally works better in practice

Evaluation Methods for Pruning

- **Validation Methods:** Reserve some portion of the training data as a *validation set*. Two common methods are:
 - Use a single training set and a single validation set.
 - *Cross-validation:* Divide the training set into N partitions. Do N experiments: each partition is used once as the validation set, and the other N-1 partitions are used as the training set.

- **Statistical Analyses:** Use statistical tests to estimate whether expanding/pruning a node is likely to produce an improvement beyond the training data.
Reduced-Error Pruning

- Split data into training and validation set.
- Build a full decision tree from the training set.
- Do until further pruning is harmful (decreases accuracy on the validation set):
 - For each non-leaf node N:
 * Temporarily prune the subtree rooted by N and replace it with a leaf node labelled with the majority class.
 * Test the accuracy of the pruned tree on the validation set.
 - Greedily remove the subtree that results in the greatest improvement in accuracy on the validation set.
Rule Post-Pruning

Perhaps most frequently used pruning method (e.g. C4.5).

1. Split data into training and validation sets.
2. Build a full decision tree from the training set.
3. Convert tree to an equivalent set of rules.
4. Prune (generalize) each rule by removing preconditions.
5. Sort pruned rules based on estimated accuracy. Use them in this order to classify new instances.

Slide CS478–15

Converting A Tree to Rules

Slide CS478–16
IF \((\text{Outlook} = \text{Sunny}) \land (\text{Humidity} = \text{High})\)
THEN \(\text{PlayTennis} = \text{No}\)

IF \((\text{Outlook} = \text{Sunny}) \land (\text{Humidity} = \text{Normal})\)
THEN \(\text{PlayTennis} = \text{Yes}\)

IF \((\text{Outlook} = \text{Overcast})\)
THEN \(\text{PlayTennis} = \text{Yes} \ldots\)

Discretizing Continuous-Valued Attributes

- Idea: dynamically define a set of discrete values that are candidates for partitioning the examples.
- For a continuous feature \(A\), each discretized value will be a binary attribute of the form \((A < \text{THRESHOLD})\).
- These dynamically generated attributes can then compete with all other (discrete) attributes when building the decision tree.

Sort the examples according to their values for \(A\).
For each ordered pair \(X_i, X_{i+1}\) in the sorted list,
 If the category of \(X_i\) and \(X_{i+1}\) are different,
 Then use the midpoint between their values as a candidate threshold.

Slide CS478–17

Slide CS478–18
An Example

<table>
<thead>
<tr>
<th>Value</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>15</td>
<td>Yes</td>
</tr>
<tr>
<td>21</td>
<td>Yes</td>
</tr>
<tr>
<td>28</td>
<td>No</td>
</tr>
<tr>
<td>32</td>
<td>Yes</td>
</tr>
<tr>
<td>40</td>
<td>Yes</td>
</tr>
<tr>
<td>50</td>
<td>No</td>
</tr>
</tbody>
</table>

Unknown Attribute Values

1. Assign the most common value for the attribute among the training examples that reached the same node in the decision tree.

2. Assign the most common value for the attribute among the training examples with the same class c_i that reached the same node in the decision tree.

3. Push the example down the decision tree in fractions, probabilistically. The fractions are based on the proportion of examples at the node that have each attribute value.
Attributes with Costs

- Introduce a cost term into attribute selection measure:

\[
\frac{Gain^2(S, A)}{Cost(A)}
\]

Strengths of decision trees

- Easy to generate; simple algorithm.
- Easy to read small trees; can be converted to rule set.
- Decision trees are highly expressive.
- Relatively fast to construct; classification is very fast.
- Can achieve good performance on many tasks.
- A wide variety of problems can be recast as classification problems.
Weaknesses of decision trees

- Not always sufficient to learn complex concepts.
- Can be hard to understand.
- Some problems with continuously-valued attributes or classes may not be easily discretized.
- Methods for handling missing attribute values are somewhat clumsy.