Computational Learning Theory

What general laws constrain inductive learning?

We seek theory to relate:

- Probability of successful learning
- Number of training examples
- Complexity of hypothesis space
- Accuracy to which target concept is approximated
- Manner in which training examples presented

Slide CS478–1

PAC Learning Setting

Given:
- set of instances X
- set of hypotheses H
- set of possible target concepts C
- training instances generated by a fixed, unknown probability distribution \mathcal{D} over X

Learner observes a sequence D of training examples of form

$\langle x, c(x) \rangle$, for some target concept $c \in C$

- instances x are drawn from distribution \mathcal{D}
- teacher provides target value $c(x)$ for each

Learner must output a hypothesis h estimating c

- h is evaluated by its performance on subsequent instances drawn according to \mathcal{D}

Slide CS478–2
True Error of a Hypothesis

Instance space X

Definition: The true error (denoted $\text{error}_D(h)$) of hypothesis h with respect to target concept c and distribution D is the probability that h will misclassify an instance drawn at random according to D.

$$\text{error}_D(h) = \Pr_{x \in D} [c(x) \neq h(x)]$$

Slide CS478–3

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is PAC-learnable by L using H if for all $c \in C$, distributions D over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $\text{error}_D(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and $\text{size}(c)$.

Slide CS478–4
Mistake Bounds

So far: how many examples needed to learn?

What about: how many mistakes before convergence?

Let’s consider similar setting to PAC learning:

- Instances drawn at random from X according to distribution D
- Learner must classify each instance before receiving correct classification from teacher
- Can we bound the number of mistakes learner makes before converging?

Slide CS478–5

Mistake Bounds: Find-S

Consider Find-S when $H = \text{conjuntion of boolean literals}$

Find-S:

- Initialize h to the most specific hypothesis $l_1 \land \lnot l_1 \land l_2 \land \lnot l_2 \ldots l_n \land \lnot l_n$
- For each positive training instance x
 - Remove from h any literal that is not satisfied by x
- Output hypothesis h.

How many mistakes before converging to correct h?

Slide CS478–6
Mistake Bounds: Halving Algorithm

Consider the Halving Algorithm:

- Learn concept using version space Candidate-Elimination algorithm
- Classify new instances by majority vote of version space members

How many mistakes before converging to correct \(h\)?

- ... in worst case?
- ... in best case?

Slide CS478–7

Optimal Mistake Bounds

Let \(M_A(C)\) be the max number of mistakes made by algorithm \(A\) to learn concepts in \(C\). (maximum over all possible \(c \in C\), and all possible training sequences)

\[
M_A(C) \equiv \max_{c \in C} M_A(c)
\]

Definition: Let \(C\) be an arbitrary non-empty concept class. The optimal mistake bound for \(C\), denoted \(Opt(C)\), is the minimum over all possible learning algorithms \(A\) of \(M_A(C)\).

\[
Opt(C) \equiv \min_{A \in \text{learning algorithms}} M_A(C)
\]

Slide CS478–8
Weighted Majority Algorithm

- generalization of the HALVING algorithm
- makes predictions by taking a weighted vote among a pool of prediction algorithms
- learns by altering the weight associated with each prediction algorithm
- accommodates inconsistent training data
- can bound the number of mistakes made

Slide CS478–9

Tom's slide goes here. Table 7.1.

Slide CS478–10
Relative Mistake Bound for Weighted Majority

Let D be any sequence of training examples.
Let A be any set of n prediction algorithms.
Let k be the minimum number of mistakes made by any algorithm in A for the training sequence D.
Then the number of mistakes of D made by the Weighted-Majority algorithm using $\beta = 1/2$ is at most

$$2.4(k + \log_2 n)$$

Empirical Support for Multiplicative Update Algorithms

Calendar scheduling

Given: Description of an event to be scheduled
Predict: Event’s location, duration, start time, day of week.

Features:
- type of event
- name of the seminar
- position of attendees
- are attendees in the user’s group
- names of the attendees in alphabetical order
Example

(req-event-type meeting) (req-seminar-type nil)
(sponsor-attendees no-value) (department-attendees cs)
(position-attendees faculty) (group-attendees? no)
(req-course-name nil) (department-speakers no-value)
(group-name no-value) (lunchtime? no)
(single-person? yes) (number-of-person 1)
(req-location dh4301c)

1685 examples

Features of the Learning Task

- “Target concept” changes with time.
- Set of possible values for each feature may not be known.

Baseline system: Calendar ApPrentice System

- decision-tree based learning method
- acquires rules sorted by observed performance
- system is run each night using the most recent 180 examples
- merges the new rules into the existing rule set
Weighted Majority Implementation

Assumption: Some small set of features will be enough to construct a good predictor.

1. For each pair of features, create one “expert” (prediction algorithm) that examines only those two features and makes predictions based on their values.

2. Weight update has $\beta = 1/2$

3. Each expert performs a simple table lookup.
 - Given a pair of values for its two features, look at the last k times that the pair of values occurred and predict the outcome that occurred most often out of those k. ($k = 5$)
 - If the pair of values has never occurred before, predict the most common class value seen so far.

Weighted Majority Extension

Speedup strategy:

- Discard experts if their weights drop too low.
- Allows algorithm to speed up as it learns more.
- Danger if too aggressive in discarding experts.
- Found that for a wide range of thresholds, one can achieve both a significant speedup and negligible loss in performance.
Winnow

Combines opinions of “specialists” that can abstain on any example.

- Create one specialist for each pair of feature—value conditions seen so far.
- Specialist wakes up to make a prediction if both conditions are true.
- Predicts the most popular outcome out of the last $k = 5$ times it had a chance to predict.
- Global prediction is based on a weighted majority vote over all predicting specialists.

Slide CS478–17

- When specialist i first appears, $w_i \leftarrow 1$ and abstains for this example.
- Weight update strategy:
 - If global prediction incorrect,
 * $w_i = 1/2 \cdot w_i$ for a_i that predict incorrectly
 * $w_i = 3/2 \cdot w_i$ for a_i that predict correctly
 - If global prediction correct,
 * $w_i = 1/2 \cdot w_i$ for a_i that predict incorrectly

Slide CS478–18
Experimental Results

<table>
<thead>
<tr>
<th>Task</th>
<th>CAP</th>
<th>Winnow</th>
<th>Winnow-big</th>
<th>WM</th>
<th>WM-big</th>
</tr>
</thead>
<tbody>
<tr>
<td>location</td>
<td>0.64</td>
<td>0.75</td>
<td>0.76</td>
<td>0.70</td>
<td>0.74</td>
</tr>
<tr>
<td>duration</td>
<td>0.63</td>
<td>0.71</td>
<td>0.74</td>
<td>0.64</td>
<td>0.73</td>
</tr>
<tr>
<td>start-time</td>
<td>0.34</td>
<td>0.51</td>
<td>0.53</td>
<td>0.39</td>
<td>0.50</td>
</tr>
<tr>
<td>day-of-week</td>
<td>0.50</td>
<td>0.57</td>
<td>0.57</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>0.53</td>
<td>0.63</td>
<td>0.65</td>
<td>0.57</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Slide CS478–19

Comments

For the Weighted Majority algorithm, the weights answer the question: “if you were only allowed to look at two features, which two do you choose?”

When predicting location,

- best feature: number of people
- best pair: number of people + seminar type

Slide CS478–20
Winnow assigns weights to each possible rule of length 2, indicating the extent to which that rule should be trusted:

- If there is a single attendee and he/she is from the ECE department, then 30 minutes.
- If there is more than one attendee and they are research programmers, the 60 minutes.
- If the attendees are faculty members and not from CMU, then 60 minutes.

Slide CS478–21

Bagging Classifiers

Bagging = Bootstrap aggregating

- A learning(data) set L consists of data
 $\{(y_n, x_n) : n = 1, \ldots, N\}$. Each x_n is a feature vector; y_n is a class.

- Assume that we have some learning algorithm that can use L to form a classifier $\varphi(x, L)$ that predicts y given x.

- Given a sequence of data sets $\{L_k\}$ each with N independent observations drawn from the same distribution as L, we can form a sequence of predictors $\{\varphi(x, L_k)\}$.

Slide CS478–22
Goal in **bagging** is to use the \(\{L_k\} \) to get a better predictor than the single data set predictor \(\varphi(x, L) \).

One obvious procedure is to replace \(\varphi(x, L) \) by:

- **discrete** \(y \): the majority vote of the \(k \) \(\varphi \)'s
- **numeric** \(y \): the average prediction of the \(k \) \(\varphi \)'s

Bagging Approximates Multiple Data Sets

Take repeated bootstrap samples \(\{L^{(B)}\} \) from \(L \) and form \(\{\varphi(x, L^{(B)})\} \).

Bootstrap sampling: Given set \(L \) containing \(N \) training examples, create \(L^i \) by drawing \(N \) examples at random with replacement from \(L \).

Hypothesis: aggregating over bootstrap samples yields higher accuracy than a single classifier.

Bagging:

- Create \(k \) bootstrap samples \(L^1 \ldots L^k \).
- Train distinct classifier on each \(L^i \).
- Classify new instance by majority vote / average.
Experimental Method

Given sample S of labeled data, do 100 times and report average

1. Split S randomly into test set T (10%) and training set D (90%).

2. Learn decision tree from D
 - e_S ← error of tree on T

3. Repeat 50 times: Create bootstrap set D^i, construct decision tree using D.
 - e_B ← error of majority vote using trees to classify T

Results

<table>
<thead>
<tr>
<th>Data Set</th>
<th>e_S</th>
<th>e_B</th>
<th>Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waveform</td>
<td>29.1</td>
<td>19.3</td>
<td>34%</td>
</tr>
<tr>
<td>Heart</td>
<td>4.9</td>
<td>2.8</td>
<td>43%</td>
</tr>
<tr>
<td>Breast Cancer</td>
<td>5.9</td>
<td>3.7</td>
<td>37%</td>
</tr>
<tr>
<td>Ionosphere</td>
<td>11.2</td>
<td>7.9</td>
<td>29%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>25.3</td>
<td>23.9</td>
<td>6%</td>
</tr>
<tr>
<td>Glass</td>
<td>30.4</td>
<td>23.6</td>
<td>22%</td>
</tr>
<tr>
<td>Soybean</td>
<td>8.6</td>
<td>6.8</td>
<td>21%</td>
</tr>
</tbody>
</table>

Slide CS478–25

Slide CS478–26
How many bootstrap samples are enough

<table>
<thead>
<tr>
<th>Number bootstrap samples</th>
<th>Misclassification Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29.1</td>
</tr>
<tr>
<td>10</td>
<td>21.8</td>
</tr>
<tr>
<td>25</td>
<td>19.4</td>
</tr>
<tr>
<td>50</td>
<td>19.3</td>
</tr>
<tr>
<td>100</td>
<td>19.3</td>
</tr>
</tbody>
</table>

Slide CS478–27

When Will Bagging Improve Accuracy?

Depends on the stability of the base-level classifiers.

A learner is *unstable* if a small change to the training set causes a large change in the output hypothesis.

- If small changes in L cause small changes in φ then $\varphi \approx \varphi_B$.
- If small changes in L cause large changes in φ then there will be an improvement in performance.

Slide CS478–28
Conclusion of Experiments

- Bagging helps unstable procedures.
- Bagging hurts the performance of stable procedures.
- Neural nets, decision/regression trees, linear regression are unstable.
- k-nn is stable.

Bagging Nearest Neighbor Classifiers

No difference between e_S and e_B

Reason:

Probability than a particular instance will be in any one Bootstrap replicate is .632

An instance x will have a different label predicted for it by the aggregate method only if x’s nearest neighbor is missing from at least half of bootstrap learning sets

The probability of this happening is $P(\text{number of heads in N tosses is less than N/2})$ when the probability of a head is .632

Clearly as N grows this gets small.