Overview: Clustering

- Supervised vs. unsupervised learning
- Three algorithms
 1. Agglomerative
 2. K-means
 3. COBWEB
- Issues

Supervised vs. unsupervised learning: example

- Do we really need labels?
Supervised vs. unsupervised learning

- Everything so far has been **supervised**
 - Labeled training data
 - In general, "tutor" provides labels and/or feedback
- Clustering is **unsupervised**
 - Unlabeled training data
 - In general, given some info, goal is to learn "something"
- Pluses and minuses
 - Labels can bias the supervised algorithm - data may not actually support the concept
 - Unsupervised is less biased but may return spurious results or miss the concept you wanted

Slide CS478 Clustering 3

Clustering

- Definition of **clustering**:
 - Grouping items so that those in the same cluster are more similar to each other than to items in other clusters
- Finding optimal solution is NP-hard
- Number of ways to partition n items into k groups:

$$S_n^{(k)} = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-i} \binom{k}{i} i^n$$

- e.g., for 25 items and 5 groups:

$$S_{25}^{(5)} = 2, 436, 684, 974, 110, 751$$

Slide CS478 Clustering 4
Clustering Algorithm

- Focus on approximations (usually greedy)
- Many, many variations
- Four main categories:

<table>
<thead>
<tr>
<th></th>
<th>Batch</th>
<th>Incremental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partitioning</td>
<td>k-means</td>
<td>COP-COBWEB</td>
</tr>
<tr>
<td>Hierarchical</td>
<td>agglomerative</td>
<td>COBWEB</td>
</tr>
</tbody>
</table>

Slide CS478 Clustering 5

Agglomerative algorithm (Ward 63)

- Batch, hierarchical
- Goal: hierarchy with varying levels of generality
- Basic algorithm
 1. Place each instance D_i in its own cluster C_i, forming a partition P_1 of the input D such that $|P_1| = n$. Let $j = 1$.
 2. While $|P_j| > 1$, find the two closest clusters $C_q, C_r \in P_j$.
 Let $P_{j+1} = P_j \setminus C_q \setminus C_r \cup \{C_q \cup C_r\}$. Increment j.

Slide CS478 Clustering 6
Agglomerative algorithm: Example

Slide CS478 Clustering 7

Agglomerative algorithm: Variations

- Different ways to compute the distance between clusters
- Usually based on distance between instances $d(x, y)$
 - Single linkage: $d(C_i, C_j) = \min_{x \in C_i, y \in C_j} d(x, y)$
 - Complete linkage: $d(C_i, C_j) = \max_{x \in C_i, y \in C_j} d(x, y)$
 - Sum of squares:
 $$d(C_i, C_j) = \sum_{x \in \{C_i \cup C_j\}} d(x, centroid(C_i \cup C_j))^2$$

Slide CS478 Clustering 8
K-means algorithm (Jancey 66, Lance 67, MacQueen 67)

- Batch, partitioning
- Goal: k disjoint groups that cover the data set
- Basic algorithm
 1. Select k initial cluster centroids, $c_1 \ldots c_k$.
 2. Assign each instance D_i to its nearest centroid c_j.
 3. For each cluster, recalculate its centroid based on which instances it contains.
 4. Alternate between (2) and (3) until convergence.

K-means algorithm: Example

Slide CS478 Clustering 9

Slide CS478 Clustering 10
K-means algorithm: Variations

- Different ways to generate the initial k centroids
 - Pick first k items in D
 - Pick k items randomly from D
 - Use point densities to pick top k widely-separated dense regions
- Can use EM, e.g. Autoclass (Bayesian) Cheeseman 88
- Iteratively swap pairs of instances

COBWEB (Fisher 87)

- Incremental, hierarchical, "conceptual clustering"
- Goal: hierarchical concept that can predict attribute values
- Basic algorithm: For each $D_i \in D$, call COBWEB(D_i, Root)
 1. If Root is a leaf, add D_i to the leaf and return it.
 2. Otherwise, find the best host child c of Root and do the best of the following:
 (a) **Add**: call COBWEB(D_i, c).
 (b) Create a **New** child containing D_i.
 (c) **Merge** two best children to get c' and call COBWEB(D_i, c').
 (d) **Split** c and call COBWEB(D_i, Root).

Slide CS478 Clustering 11

Slide CS478 Clustering 12
COBWEB: Example

<table>
<thead>
<tr>
<th></th>
<th>Number of legs</th>
<th>Body covering</th>
</tr>
</thead>
<tbody>
<tr>
<td>fish</td>
<td>0 scales</td>
<td></td>
</tr>
<tr>
<td>lizard</td>
<td>4 scales</td>
<td></td>
</tr>
<tr>
<td>mouse</td>
<td>4 fur</td>
<td></td>
</tr>
<tr>
<td>rabbit</td>
<td>4 fur</td>
<td></td>
</tr>
<tr>
<td>snake</td>
<td>0 scales</td>
<td></td>
</tr>
<tr>
<td>gator</td>
<td>4 scales</td>
<td></td>
</tr>
</tbody>
</table>

Add fish:

\[
P(C0) = 1.0 \\
P(0 \text{ legs} \mid C0) = 1.0 \\
P(\text{scales} \mid C0) = 1.0 \\
\ldots
\]

COBWEB: Example

Add lizard:

\[
P(C0) = 0.5 \\
P(0 \text{ legs} \mid C0) = 1.0 \\
P(\text{scales} \mid C0) = 1.0 \\
\ldots
\]

\[
P(C1) = 0.5 \\
P(4 \text{ legs} \mid C1) = 1.0 \\
P(\text{scales} \mid C1) = 1.0 \\
\ldots
\]

\[
CU = 0.0 \\
CU = 0.25
\]

- Category utility (CU) for c classes

\[
CU = \frac{\sum_{k=1}^{c} P(C_k) \left[\sum_i \sum_j P(A_i = V_{ij} \mid C_k)^2 \right] - \sum_i \sum_j P(A_i = V_{ij})^2}{c}
\]
COBWEB: Example

Add mouse:

ADD to C0

P(C0) = 0.67
P(0 legs | C0) = 0.5
P(4 legs | C0) = 0.5
P(scales | C0) = 0.5
P(fur | C0) = 0.5
...

P(C1) = 0.33
P(4 legs | C1) = 1.0
P(scales | C1) = 0.5
P(fur | C1) = 0.5
...

CU = 0.11

ADD to C1

P(C0) = 0.33
P(0 legs | C0) = 1.0
P(4 legs | C0) = 1.0
P(scales | C0) = 1.0
...

P(C1) = 0.67
P(4 legs | C1) = 1.0
P(scales | C1) = 0.5
P(fur | C1) = 0.5
...

CU = 0.28

Summary of CU values
ADD to C0: 0.11
ADD to C1: 0.28
NEW: 0.30

Slide CS478 Clustering 15

COBWEB: Example

NEW

Add mouse:

fish

P(C0) = 0.33
P(0 legs | C0) = 1.0
P(scales | C0) = 1.0
...

P(C1) = 0.33
P(4 legs | C1) = 1.0
P(scales | C1) = 1.0
...

lizard

P(C2) = 0.33
P(4 legs | C2) = 1.0
P(fur | C2) = 1.0
...

mouse

CU = 0.30

Summary of CU values
ADD to C0: 0.11
ADD to C1: 0.28
NEW: 0.30

Slide CS478 Clustering 16
COBWEB: Example

Add rabbit:

<table>
<thead>
<tr>
<th>Summary of CU values</th>
<th>ADD to C0: 0.13</th>
<th>ADD to C1: 0.21</th>
<th>ADD to C2: 0.29</th>
<th>NEW: 0.22</th>
<th>MERGE C1,C2: 0.27</th>
</tr>
</thead>
</table>

Add snake:

<table>
<thead>
<tr>
<th>Summary of CU values</th>
<th>ADD to C0: 0.32</th>
<th>ADD to C1: 0.25</th>
<th>ADD to C2: 0.14</th>
<th>NEW: 0.24</th>
<th>MERGE C0,C1: 0.35</th>
</tr>
</thead>
</table>

Slide CS478 Clustering 17

Before snake:

- **P(C0) = 0.25**
 - P(0 legs | C0) = 1.0
 - P(scales | C0) = 1.0
- **P(C1) = 0.25**
 - P(4 legs | C1) = 1.0
 - P(scales | C1) = 1.0
- **P(C2) = 0.50**
 - P(4 legs | C2) = 1.0
 - P(fur | C2) = 1.0

After snake:

- **P(C0) = 0.60**
 - P(0 legs | C0) = 1.0
 - P(scales | C0) = 1.0
- **P(C1) = 0.40**
 - P(0 legs | C1) = 1.0
 - P(scales | C1) = 1.0
- **P(C2) = 0.33**
 - P(4 legs | C2) = 1.0
 - P(fur | C2) = 1.0

CU = 0.35

Slide CS478 Clustering 18
Issues

- Evaluation is difficult for unsupervised learning!
 - Using labels only evaluates how well the algorithm does on finding that specific concept.
 - In any real application, labels will not be known.

- For partitioning, how do you choose the right k (number of clusters)?
 - Possibly many distinct meaningful answers.
 - For example, cluster a deck of cards into x groups.