Unsupervised Concept Induction

- The vast majority of research in ML has dealt with supervised tasks.

 Given: attribute-value pairs that describe an object or observation

 Predict: class value

- **Flexible prediction:**

 Given: attribute-value pairs, but no knowledge of which are predictors and which are to be predicted

 Predict: any feature from any others

 Performance measure: ???

Algorithm for Flexible Prediction

- Nearest-neighbor

- Transform supervised method:

 - Given k attributes, run the supervised algorithm k times, in each case with a different feature playing the role of the class attribute.

 - Produces k classifiers, each designed to predict one attribute as a function of the others.

- Neural network solutions

- Clustering
Learning Association Rules

basket data: each record consists of the **transaction date** and the **items bought**.

Goal: mine association rules from market basket data.

Sample rule: **98% of customers that purchase tires and auto accessories also get automotive services done.**

Definitions

Let $I = \{i_1, i_2, \ldots, i_m\}$ be a set of literals called **items**.

Let D be a set of transactions where each transaction $T \subseteq I$.

A transaction T contains X, a set of some items in I, if $X \subseteq T$.

An **association rule** is an implication of the form $X \Rightarrow Y$, where $X \subseteq I$, $Y \subseteq I$, and $X \cap Y = \emptyset$.

$X \Rightarrow Y$ holds in D with **confidence** c if $c\%$ of transactions in D that contain X also contain Y.

$X \Rightarrow Y$ holds in D with **support** s if $s\%$ of transactions in D contain $X \cup Y$.
Example

\[D = \{
\{x, y\}, \{w, z\}, \{x, y\}, \{a, z\}, \{x\}, \{b, z\}, \{a, x\}, \{c, z\}, \{y\}, \{d, z\}\} \]

Learning Problem

Given a set of transactions \(D\), the problem of mining association rules is to generate all association rules that have support and confidence greater than the user-specified minimum support (\(\text{minsup}\)) and minimum confidence (\(\text{minconf}\)).
High-Level Algorithm

1. Find all sets of items (itemsets) that have transaction support above minsup.
 - Itemsets with minimum support are called large itemsets.
 - All others are called small itemsets.
2. Use the large itemsets to generate the desired rules.
 - For every large itemset l, find all non-empty subsets of l.
 - For every such subset a, output a rule of the form $a \Rightarrow (l - a)$ if its confidence is at least minconf.

Discovering Large Itemsets

- Make multiple passes over the data.
- Pass 1: count the support of individual items; determine which of them are large.
- Subsequent passes: Use the large itemsets from the previous pass to generate new potentially large itemsets, called candidate itemsets; count the actual support for these candidate itemsets and remove those below minsup.
- Continue until no new large itemsets are found.
An Algorithm for Discovering Large Itemsets

$L_1 = \{ \text{large 1-itemsets} \};$
for (k=2; $L_{k-1} \neq \emptyset$; k++) do
 $C_k = \text{gen-new-candidates}(L_{k-1});$
 forall transactions $t \in D$ do
 $C_t = \text{subset}(C_k, t);$ //candidates contained in t
 forall candidates $c \in C_t$ do
 c.count++;
 $L_k = \{ c \in C_k | \frac{c.\text{count}}{|D|} \geq \text{minsup} \}$
Return ($\bigcup_k L_k$);

Slide CS478–9

Generating New Candidates

\text{GEN-NEW-CANDIDATES} (L_{k-1})
Read each transaction t.
- Determine which of the large itemsets in L_{k-1} are present in t.
- Extend each such itemset l with all those large items that are present in t and occur later in the lexicographic ordering than any of the items in l.
- Save these extensions in C.
- Delete all itemsets $c \in C$ such that some (k-1)-subset of c is not in L_{k-1}.
- $C_k = C_k \cup C$.
Return C_k.

Slide CS478–10
Example

Assume \(L_3 = \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{1, 3, 5\}, \{2, 3, 4\}\} \).

\text{GEN-NEW-CANDIDATES} (L_{k-1}) :
- in response to \(t = \{1, 2, 3, 4, 5\} \), produces