Hidden Markov Models

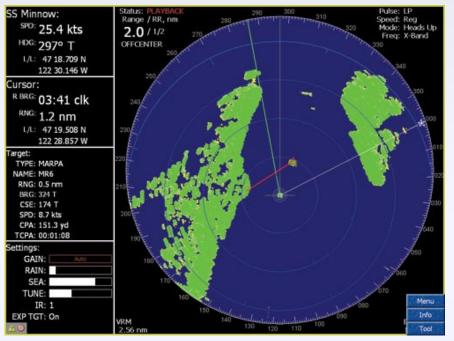
CS4758: Robot Learning

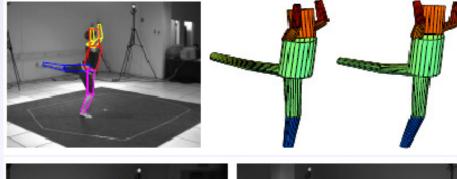
Ashutosh Saxena

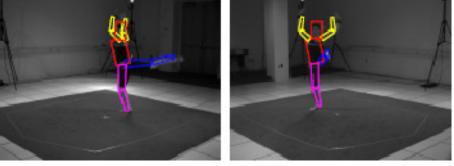
Lecture 14

Lecture slides also taken from Eric Sudderth and Andrew Moore.

Target Tracking







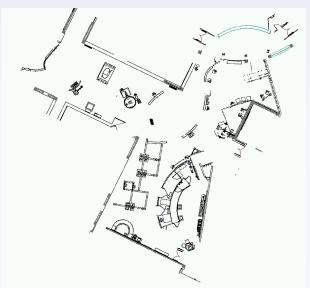
Radar-based tracking of multiple targets

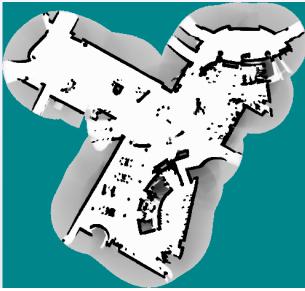
Visual tracking of articulated objects (L. Sigal et. al., 2006)

• Estimate motion of targets in 3D world from indirect, potentially noisy measurements

Robot Navigation: SLAM

Simultaneous Localization and Mapping

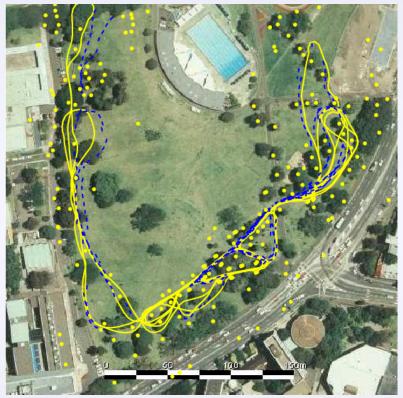




Landmark SLAM (E. Nebot, Victoria Park)

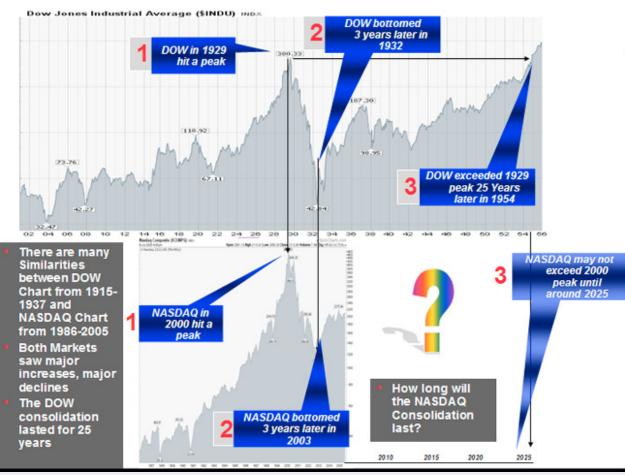
CAD Map

(S. Thrun, San Jose Tech Museum) **Estimated Map**



 As robot moves, estimate its pose & world geometry

Financial Forecasting



http://www.steadfastinvestor.com/

 Predict future market behavior from historical data, news reports, expert opinions, ...

Outline

Introduction to Temporal Processes

- Markov chains
- Hidden Markov models

Discrete-State HMMs

- > Inference: Filtering, smoothing, Viterbi, classification
- Learning: EM algorithm

Continuous-State HMMs

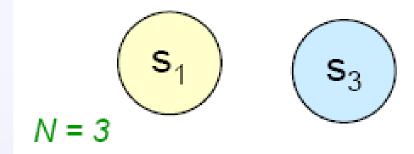
- Linear state space models: Kalman filters
- > Nonlinear dynamical systems: Particle filters

Applications and Extensions

A Markov System

Has *N* states, called *s*₁, *s*₂...*s*_N

There are discrete timesteps, *t=0, t=1, ...*



t=0

A Markov System

Has N states, called s₁, s₂ .. s_N

There are discrete timesteps, *t=0, t=1, ...*

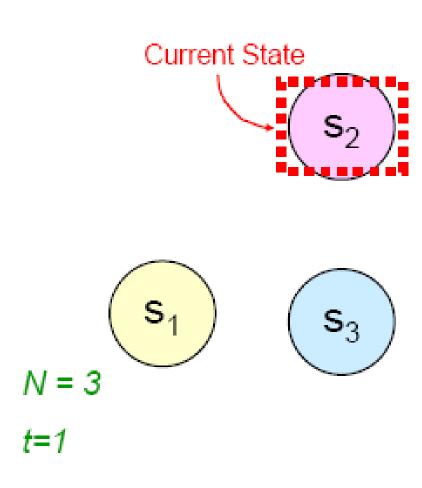
On the t'th timestep the system is in exactly one of the available states. Call it q_t

Note:
$$q_t \in \{s_1, s_2 \dots s_N\}$$

N = 3

t=0

 $q_t = q_0 = s_3$



 $q_t = q_1 = s_2$

A Markov System

Has N states, called s₁, s₂ .. s_N

There are discrete timesteps, *t=0, t=1, …*

On the t'th timestep the system is in exactly one of the available states. Call it q_t

Note:
$$q_t \in \{s_1, s_2 .. s_N\}$$

Between each timestep, the next state is chosen randomly.

$$P(q_{t+1}=s_1|q_t=s_2) = 1/2$$

$$P(q_{t+1}=s_2|q_t=s_2) = 1/2$$

$$P(q_{t+1}=s_3|q_t=s_2) = 0$$

$$P(q_{t+1}=s_2|q_t=s_1) = 0$$

$$P(q_{t+1}=s_3|q_t=s_1) = 1$$

$$S_2$$

$$S_2$$

$$S_2$$

$$S_2$$

$$S_3$$

$$N = 3$$

$$t=1$$

$$q_t = q_1 = s_2$$

$$P(q_{t+1}=s_1|q_t=s_3) = 1/3$$

$$P(q_{t+1}=s_1|q_t=s_3) = 1/3$$

$$P(q_{t+1}=s_3|q_t=s_3) = 2/3$$

$$P(q_{t+1}=s_3|q_t=s_3) = 0$$

A Markov System

Has N states, called s₁, s₂ .. s_N

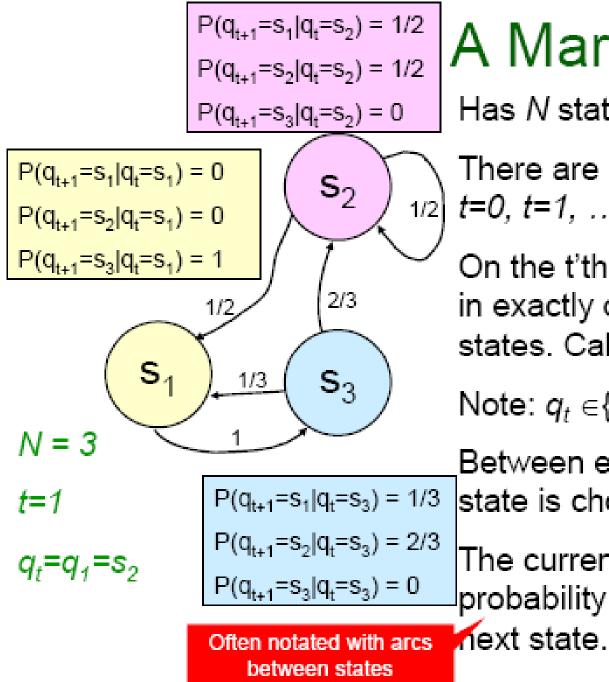
There are discrete timesteps, *t=0, t=1, ...*

On the t'th timestep the system is in exactly one of the available states. Call it q_t

Note:
$$q_t \in \{s_1, s_2 ... s_N\}$$

Between each timestep, the next state is chosen randomly.

The current state determines the probability distribution for the next state.



A Markov System

Has *N* states, called *s*₁, *s*₂ .. *s*_N

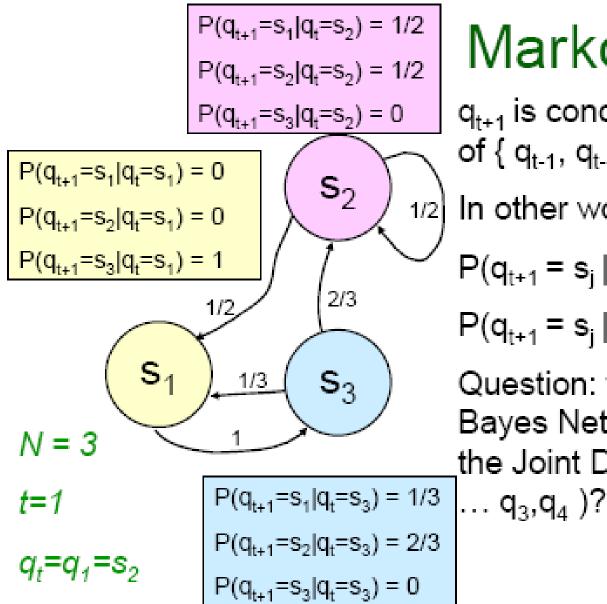
There are discrete timesteps, *t=0, t=1, ...*

On the t'th timestep the system is in exactly one of the available states. Call it q_t

Note:
$$q_t \in \{s_1, s_2 .. s_N\}$$

Between each timestep, the next state is chosen randomly.

The current state determines the probability distribution for the



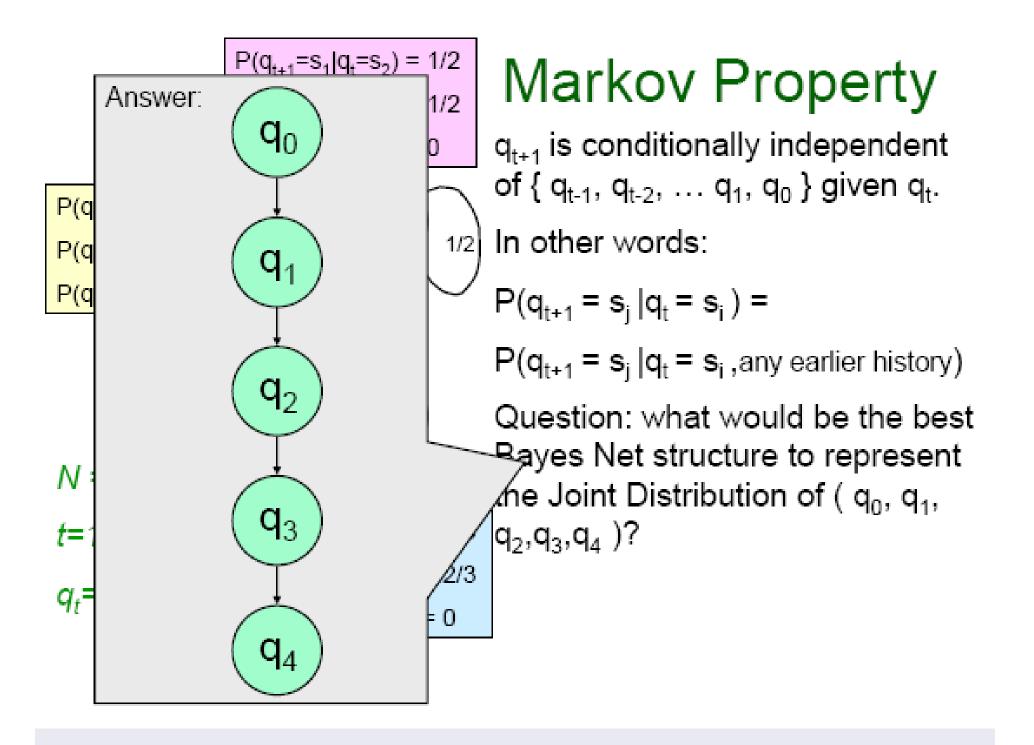
Markov Property

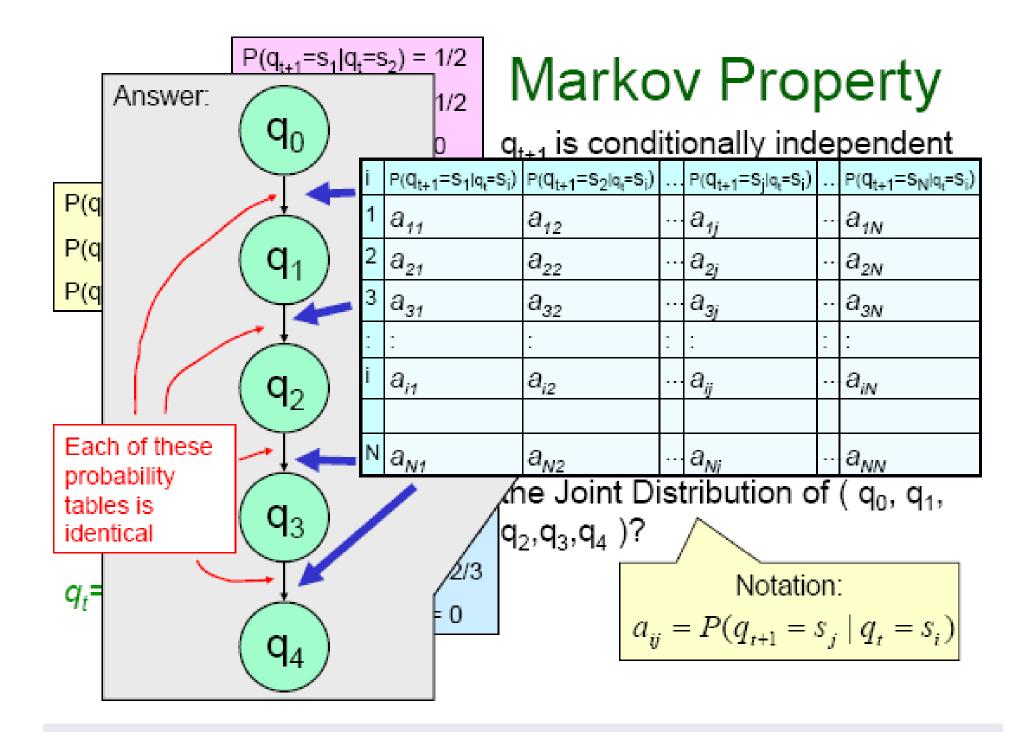
q_{t+1} is conditionally independent of { $q_{t-1}, q_{t-2}, \dots, q_1, q_0$ } given q_t . In other words:

$$P(q_{t+1} = s_j | q_t = s_i) =$$

 $P(q_{t+1} = s_i | q_t = s_i, any earlier history)$

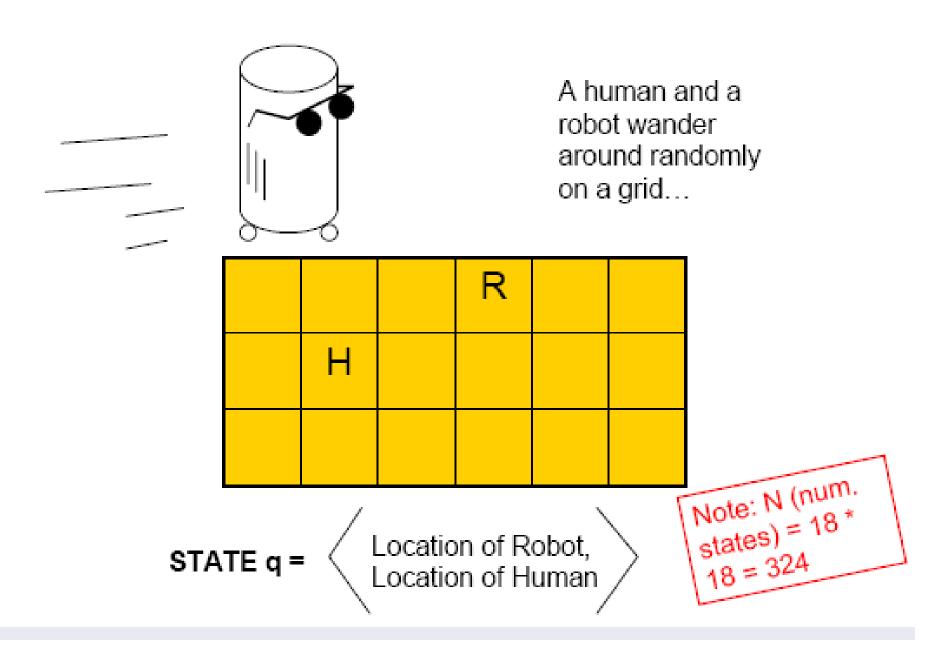
Question: what would be the best Bayes Net structure to represent the Joint Distribution of (q₀, q₁,



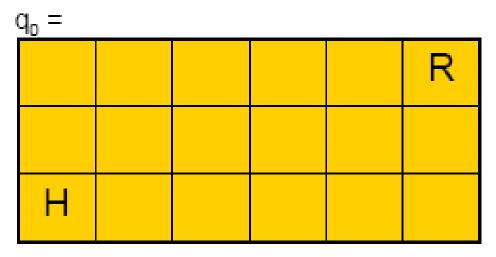


Example

A Blind Robot



Dynamics of System



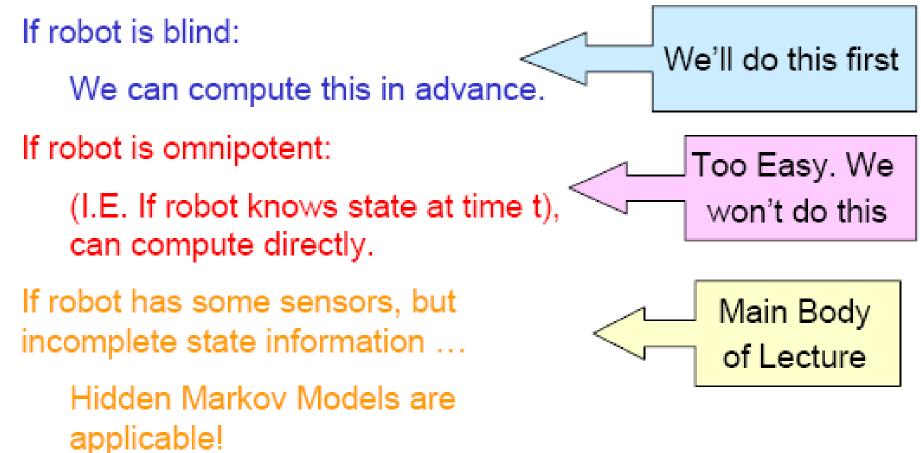
Each timestep the human moves randomly to an adjacent cell. And Robot also moves randomly to an adjacent cell.

Typical Questions:

- "What's the expected time until the human is crushed like a bug?"
- "What's the probability that the robot will hit the left wall before it hits the human?"
- "What's the probability Robot crushes human on next time step?"

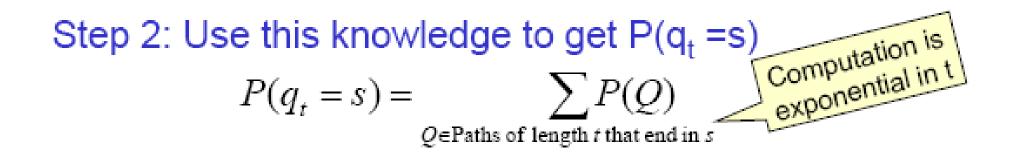
Example Question

"It's currently time t, and human remains uncrushed. What's the probability of crushing occurring at time t + 1 ?"



What is P(q_t =s)? slow, stupid answer

Step 1: Work out how to compute P(Q) for any path Q = $q_1 q_2 q_3 ... q_t$ Given we know the start state q_1 (i.e. P(q_1)=1) P($q_1 q_2 ... q_t$) = P($q_1 q_2 ... q_{t-1}$) P($q_t | q_1 q_2 ... q_{t-1}$) = P($q_1 q_2 ... q_{t-1}$) P($q_t | q_{t-1}$) WHY? = P($q_2 | q_1$)P($q_3 | q_2$)...P($q_t | q_{t-1}$)



- For each state s_i, define
 p_t(i) = Prob. state is s_i at time t
 = P(q_t = s_i)
- Easy to do inductive definition

 $\forall i \quad p_0(i) =$

$$\forall j \quad p_{t+1}(j) = P(q_{t+1} = s_j) =$$

- For each state s_i, define
 p_t(i) = Prob. state is s_i at time t
 = P(q_t = s_i)
- Easy to do inductive definition
- $\forall i \quad p_0(i) = \begin{cases} 1 & \text{if } s_i \text{ is the start state} \\ 0 & \text{otherwise} \end{cases}$

$$\forall j \quad p_{t+1}(j) = P(q_{t+1} = s_j) =$$

- For each state s_i, define
 p_t(i) = Prob. state is s_i at time t
 = P(q_t = s_i)
- Easy to do inductive definition

$$\forall i \quad p_0(i) = \begin{cases} 1 & \text{if } s_i \text{ is the start state} \\ 0 & \text{otherwise} \end{cases}$$

$$\forall j \quad p_{t+1}(j) = P(q_{t+1} = s_j) =$$

$$\sum_{i=1}^{N} P(q_{t+1} = s_j \land q_t = s_i) =$$

- For each state s_i, define
 p_t(i) = Prob. state is s_i at time t
 = P(q_t = s_i)
- Easy to do inductive definition

$$\forall i \quad p_0(i) = \begin{cases} 1 & \text{if } s_i \text{ is the start state} \\ 0 & \text{otherwise} \end{cases}$$

$$\forall j \quad p_{t+1}(j) = P(q_{t+1} = s_j) =$$

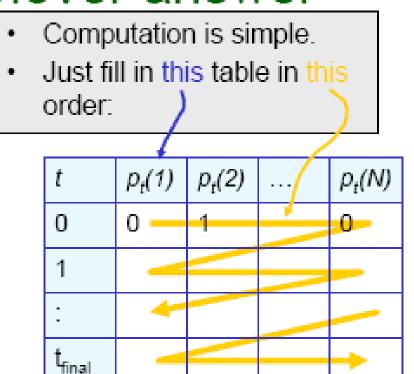
$$\sum_{i=1}^{N} P(q_{t+1} = s_j \land q_t = s_i) =$$

$$P(q_{t+1} = s_j \mid q_t = s_i) =$$

- For each state s_i, define
 p_t(i) = Prob. state is s_i at time t
 = P(q_t = s_i)
- Easy to do inductive definition $\forall i \quad p_0(i) = \begin{cases} 1 & \text{if } s_i \text{ is the start state} \\ 0 & \text{otherwise} \end{cases}$

$$\forall j \quad p_{t+1}(j) = P(q_{t+1} = s_j) =$$

$$\sum_{i=1}^{N} P(q_{t+1} = s_j \land q_t = s_i) =$$



$$\sum_{i=1}^{N} P(q_{t+1} = s_j \mid q_t = s_i) P(q_t = s_i) = \sum_{i=1}^{N} a_{ij} p_t(i)$$

- For each state s_i, define
 p_t(i) = Prob. state is s_i at time t
 = P(q_t = s_i)
- Easy to do inductive definition $\forall i \quad p_0(i) = \begin{cases} 1 & \text{if } s_i \text{ is the start state} \\ 0 & \text{otherwise} \end{cases}$

$$\forall j \quad p_{t+1}(j) = P(q_{t+1} = s_j) = \underbrace{\overset{N}{\underset{N}{\sum}}}$$

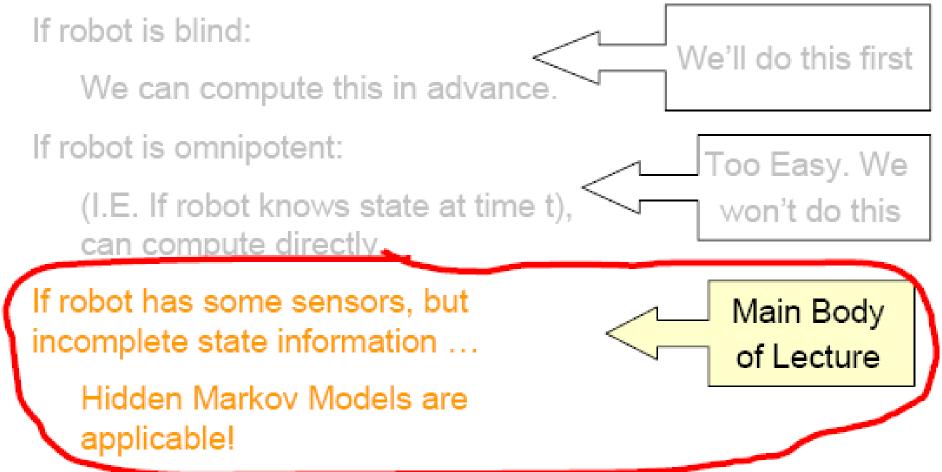
$$\sum_{i=1}^{N} P(q_{t+1} = s_j \wedge q_t = s_i) =$$

- Cost of computing P_t(i) for all states S_i is now O(t N²)
- The stupid way was O(N^t)
- This was a simple example
- It was meant to warm you up to this trick, called *Dynamic Programming,* because HMMs do many tricks like this.

$$\sum_{i=1}^{N} P(q_{t+1} = s_j | q_t = s_i) P(q_t = s_i) = \sum_{i=1}^{N} a_{ij} p_t(i)$$

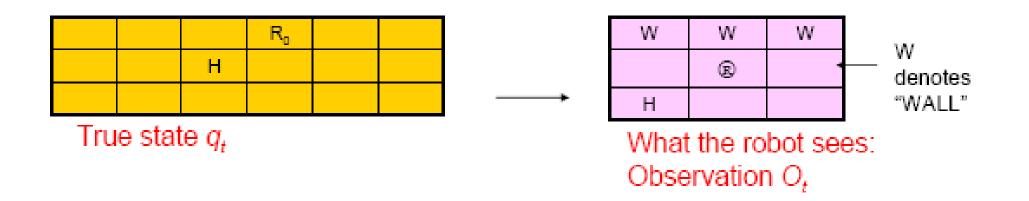
Hidden State

"It's currently time t, and human remains uncrushed. What's the probability of crushing occurring at time t + 1 ?"



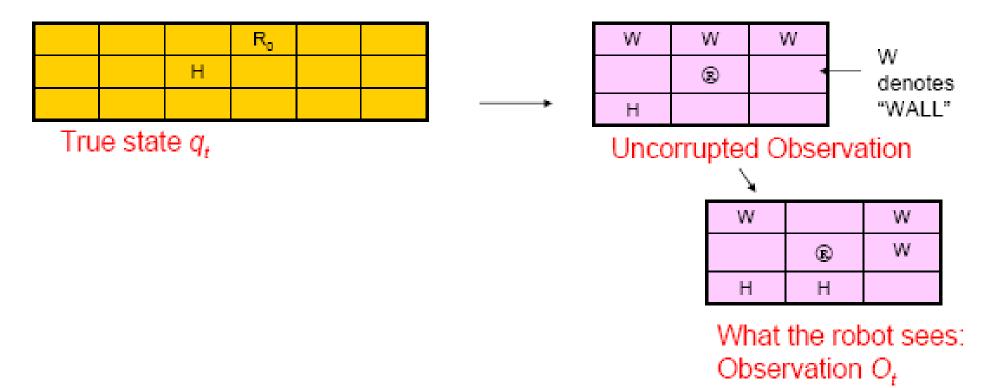
Hidden State

- The previous example tried to estimate P(q_t = s_i) unconditionally (using no observed evidence).
- Suppose we can observe something that's affected by the true state.
- Example: Proximity sensors. (tell us the contents of the 8 adjacent squares)



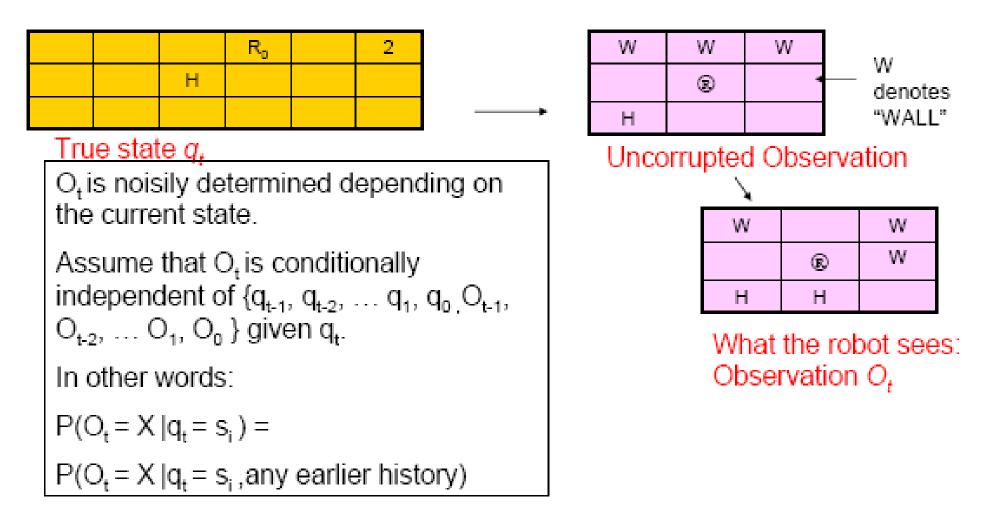
Noisy Hidden State

 Example: Noisy Proximity sensors. (unreliably tell us the contents of the 8 adjacent squares)



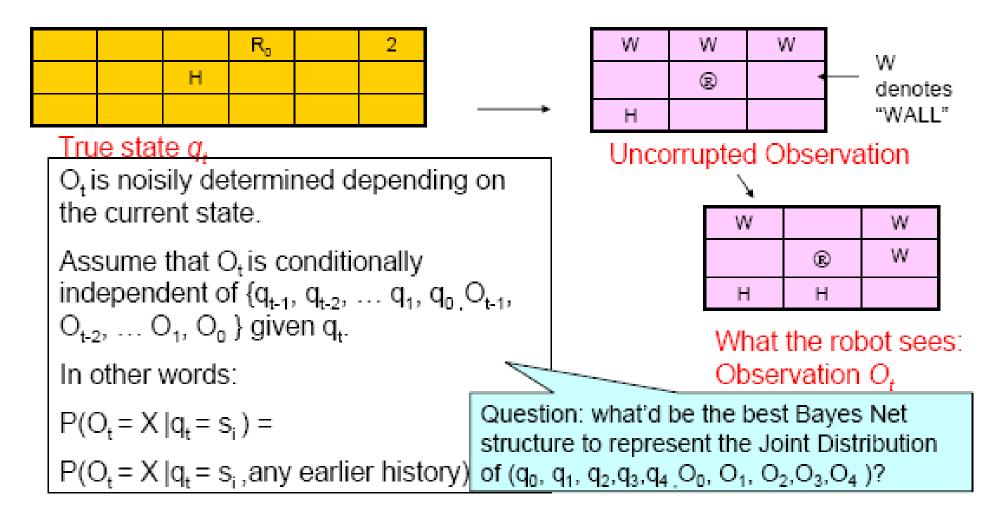
Noisy Hidden State

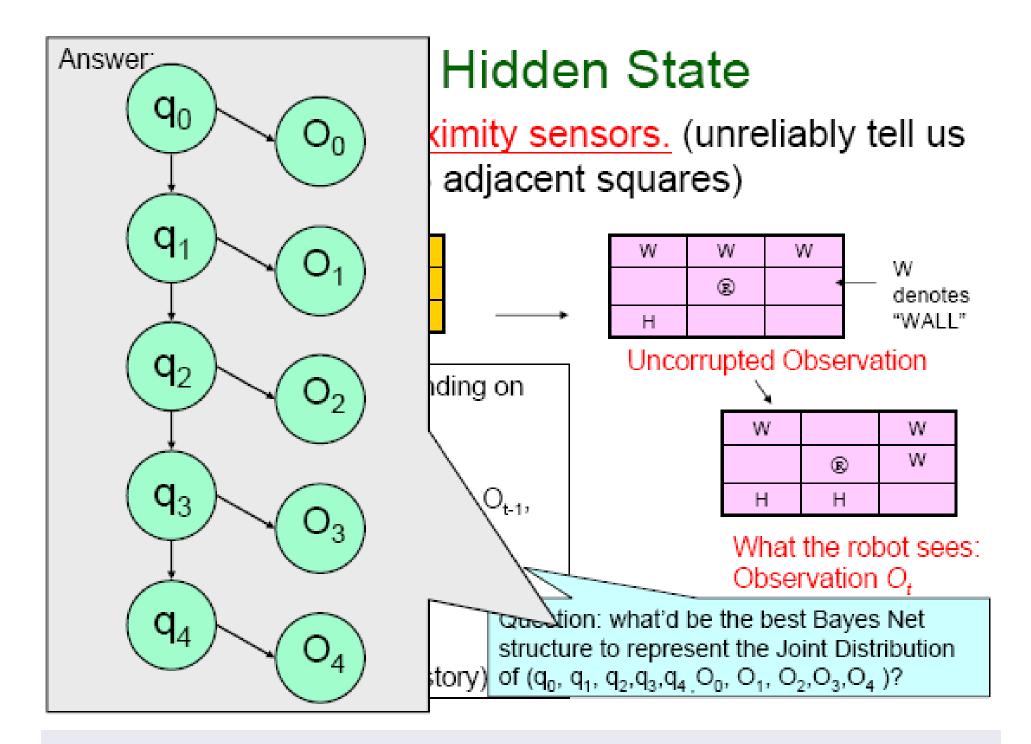
 Example: Noisy Proximity sensors. (unreliably tell us the contents of the 8 adjacent squares)

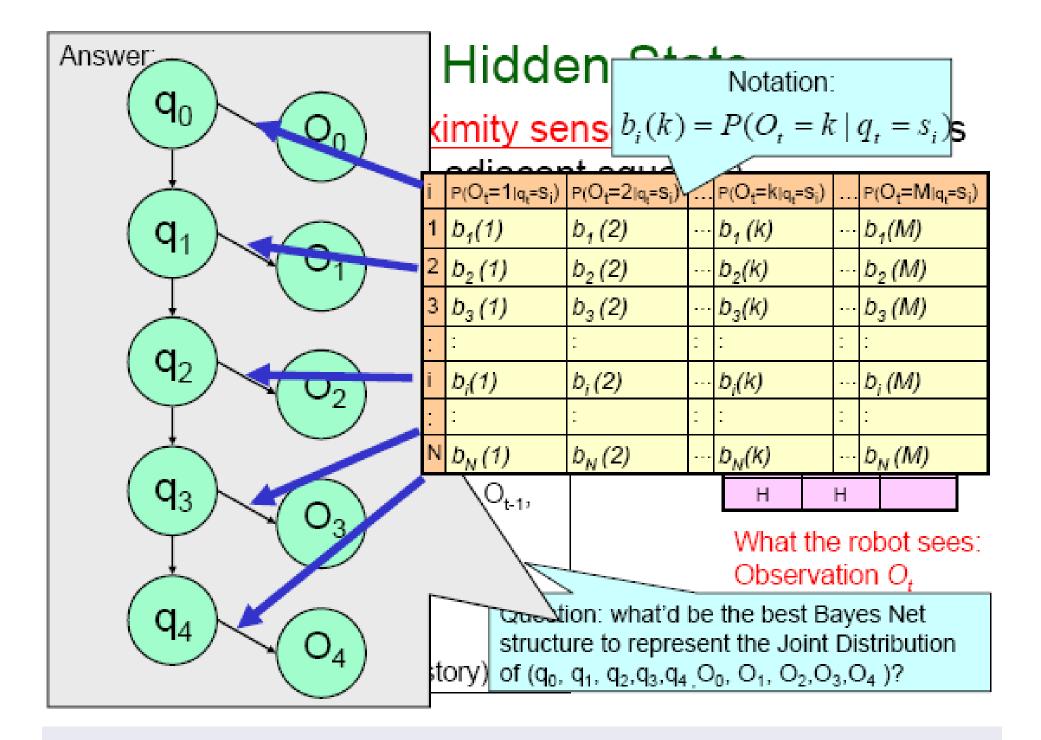


Noisy Hidden State

 Example: Noisy Proximity sensors. (unreliably tell us the contents of the 8 adjacent squares)







Hidden Markov Models

Our robot with noisy sensors is a good example of an HMM

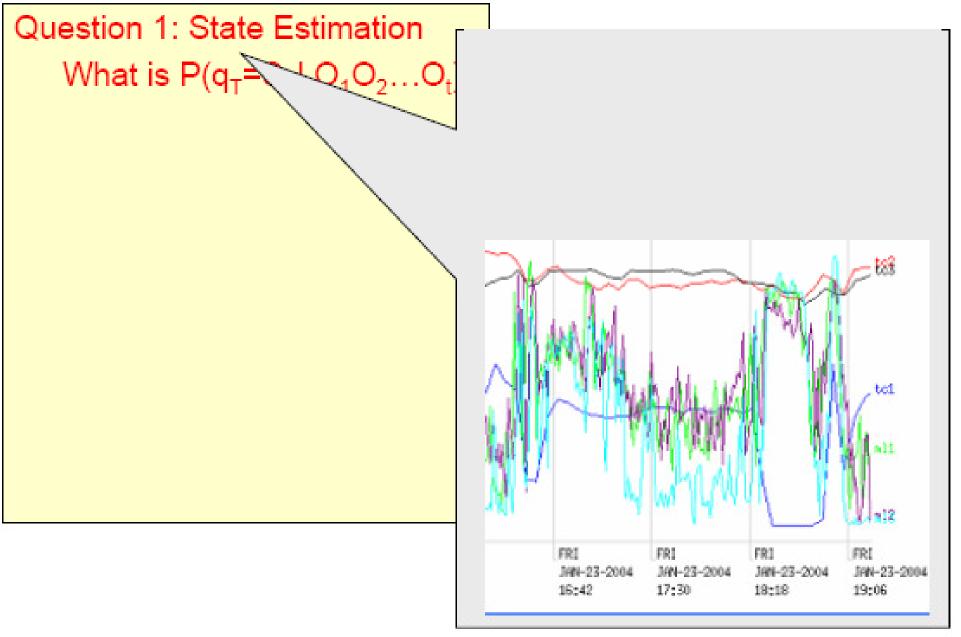
- Question 1: State Estimation
 What is P(q_T=S_i | O₁O₂...O_T)
 It will turn out that a new cute D.P. trick will get this for us.
- Question 2: Most Probable Path Given O₁O₂...O_T, what is the most probable path that I took? And what is that probability?

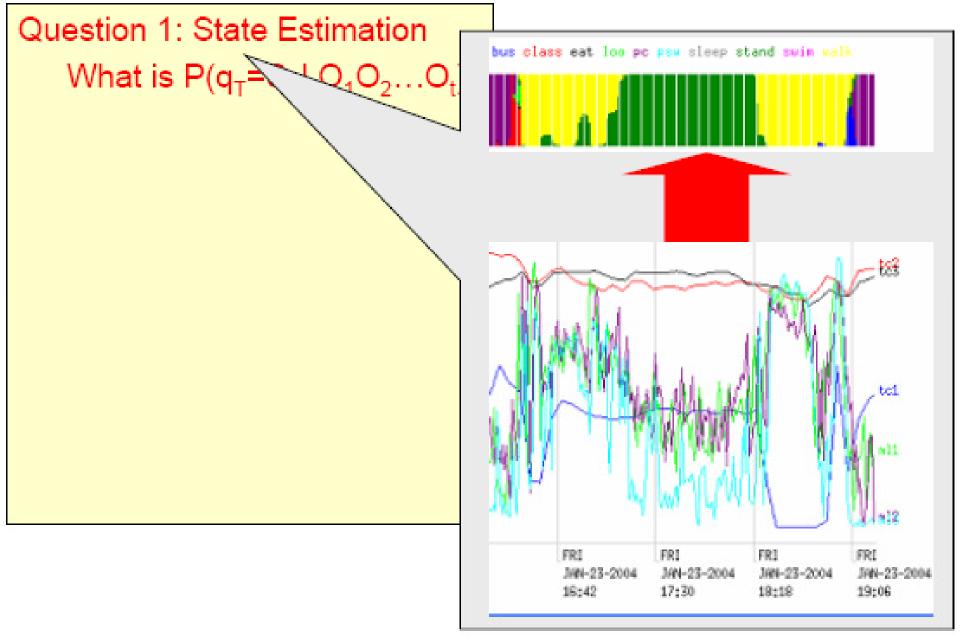
Yet another famous D.P. trick, the VITERBI algorithm, gets this.

Question 3: Learning HMMs:

Given O₁O₂...O_T, what is the maximum likelihood HMM that could have produced this string of observations? Very very useful. Uses the E.M. Algorithm

Question 1: State Estimation What is P(q_T=S_i | O₁O₂...O_t)

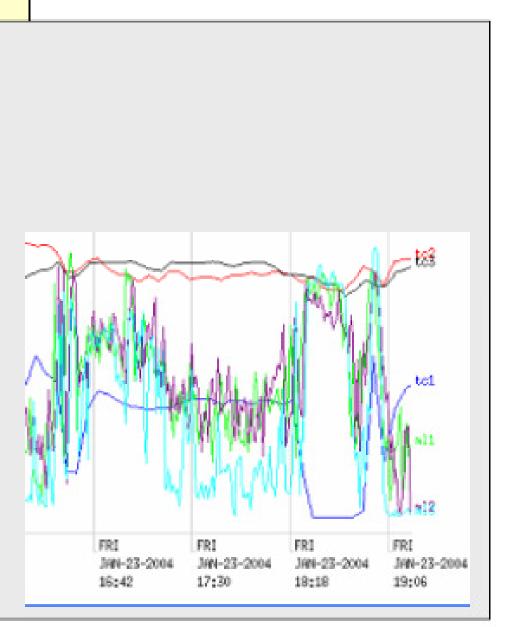




Question 1: State Estimation What is $P(q_T=S_i | O_1O_2...O_t)$ Question 2: Most Probable Path Given $O_1O_2...O_T$, what is the most probable path that I took?

Some Famous HMM Tasks

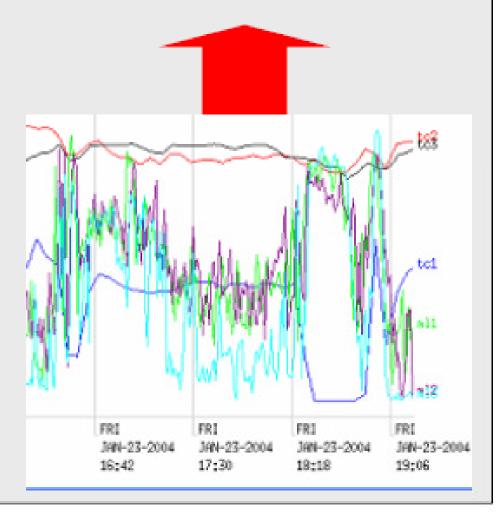
Question 1: State Estimation What is $P(q_T=S_i | O_1O_2...O_t)$ Question 2: Most Probable Pat Given $O_1O_2...O_T$, what is the most probable path that I took?



Some Famous HMM Tasks

Question 1: State Estimation What is $P(q_T=S_i | O_1O_2...O_t)$ Question 2: Most Probable Pat Given $O_1O_2...O_T$, what is the most probable path that I took?

Woke up at 8.35, Got on Bus at 9.46, Sat in lecture 10.05-11.22...

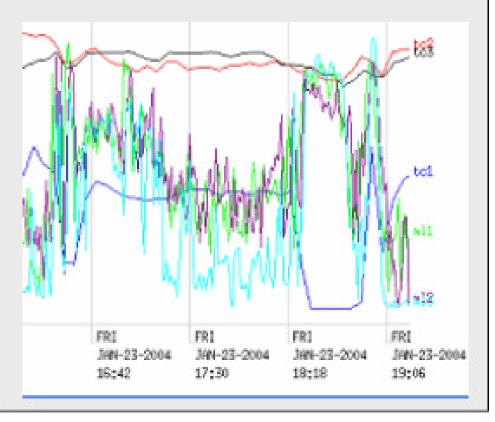


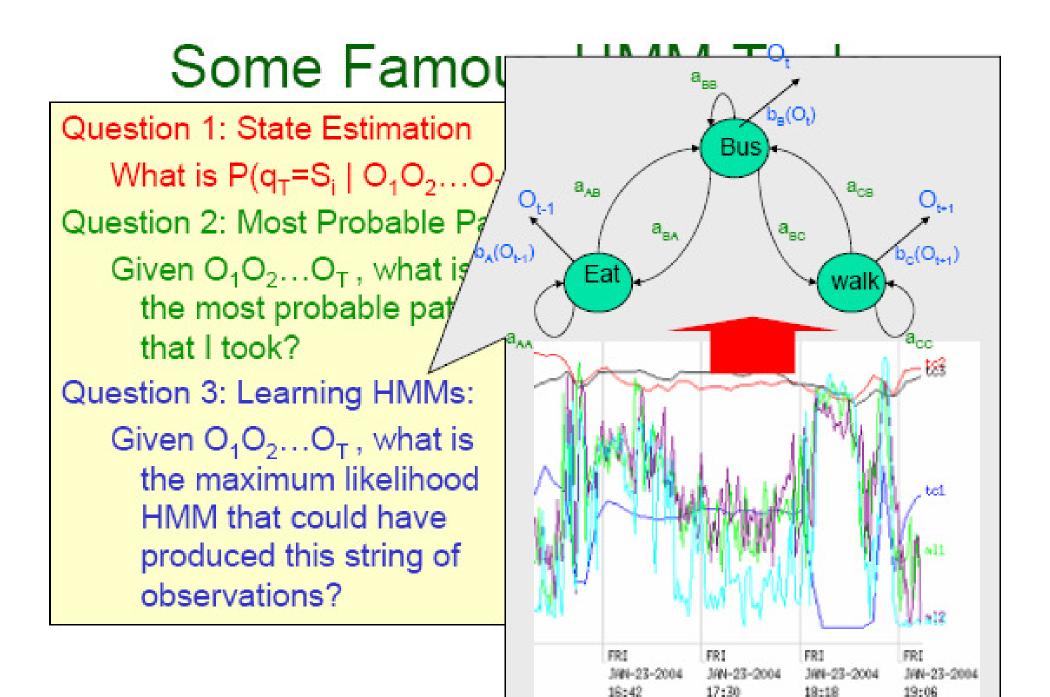
Some Famous HMM Tasks

Question 1: State Estimation What is $P(q_T=S_i \mid O_1O_2...O_f)$ Question 2: Most Probable Path Given O₁O₂...O_T, what is the most probable path that I took? Question 3: Learning HMMs: Given O₁O₂...O_T, what is the maximum likelihood HMM that could have produced this string of observations?

Some Famor

Question 1: State Estimation What is $P(q_T=S_i \mid O_1O_2...O_i)$ Question 2: Most Probable Pa Given O₁O₂...O_T, what if the most probable pat that I took? Question 3: Learning HMMs: Given O₁O₂...O_T, what is the maximum likelihood HMM that could have produced this string of observations?





Basic Operations in HMMs

For an observation sequence $O = O_1 \dots O_7$, the three basic HMM operations are:

Problem	Algorithm	Complexity
Evaluation: Calculating P(q _t =S _i O ₁ O ₂ O _t)	Forward-Backward	O(TN ²)
Inference: Computing $Q^* = argmax_Q P(Q O)$	Viterbi Decoding	O(TN ²)
Learning: Computing $\lambda^* = \arg \max_{\lambda} P(O \lambda)$	Baum-Welch (EM)	O(TN ²)

T = # timesteps, N = # states

HMM Notation (from Rabiner's Survey) The states are labeled $S_1 S_2 ... S_N$

For a particular trial....

*L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition," Proc. of the IEEE, Vol.77, No.2, pp.257--286, 1989.

Available from http://www.pige.com/ets/5/59800018626.pdf?emumber=18626

Let T be the number of observations

- T is also the number of states passed through
- $O = O_1 O_2 .. O_T$ is the sequence of observations
- $Q = q_1 q_2 ... q_T$ is the notation for a path of states

$$\label{eq:lambda} \begin{split} \lambda = \langle N, M, \{\pi_{i_j}\}, \{a_{ij}\}, \{b_i(j)\} \rangle & \text{ is the specification of an } \\ & \text{HMM} \end{split}$$

HMM Formal Definition

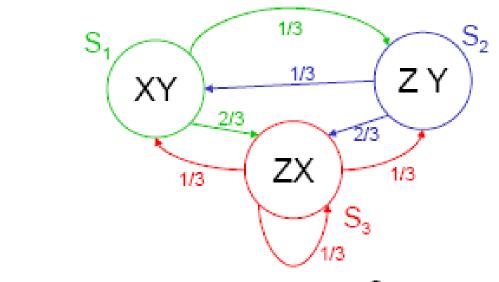
An HMM, λ, is a 5-tuple consisting of

- N the number of states
- M the number of possible observations
- {π₁, π₂, ... π_N} The starting state probabilities
 P(q₀ = S_i) = π_i

This is new. In our previous example, start state was deterministic

The state transition probabilities $P(q_{t+1}=S_j \mid q_t=S_i)=a_{ij}$

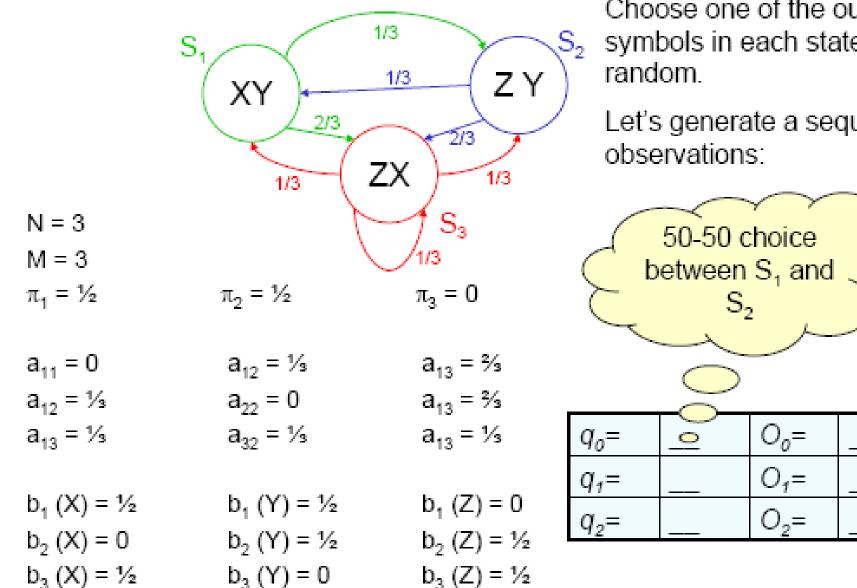
The observation probabilities P(O_t=k | q_t=S_i)=b_i(k)



Start randomly in state 1 or 2

Choose one of the output symbols in each state at random.

- N = 3
- M = 3
- $\pi_1 = 1/2$ $\pi_2 = 1/2$ $\pi_3 = 0$
- $a_{11} = 0$ $a_{12} = 1/3$ $a_{13} = 2/3$
- $a_{12} = 1/3$ $a_{22} = 0$ $a_{13} = 2/3$ $a_{13} = 1/3$ $a_{32} = 1/3$ $a_{13} = 1/3$
- a13 ... a32 ... a13 ...
- $b_1(X) = 1/2$ $b_1(Y) = 1/2$ $b_1(Z) = 0$ $b_2(X) = 0$ $b_2(Y) = 1/2$ $b_2(Z) = 1/2$
- $b_3(X) = 1/2$ $b_3(Y) = 0$ $b_3(Z) = 1/2$



Start randomly in state 1 or 2

Choose one of the output symbols in each state at

Let's generate a sequence of

S.

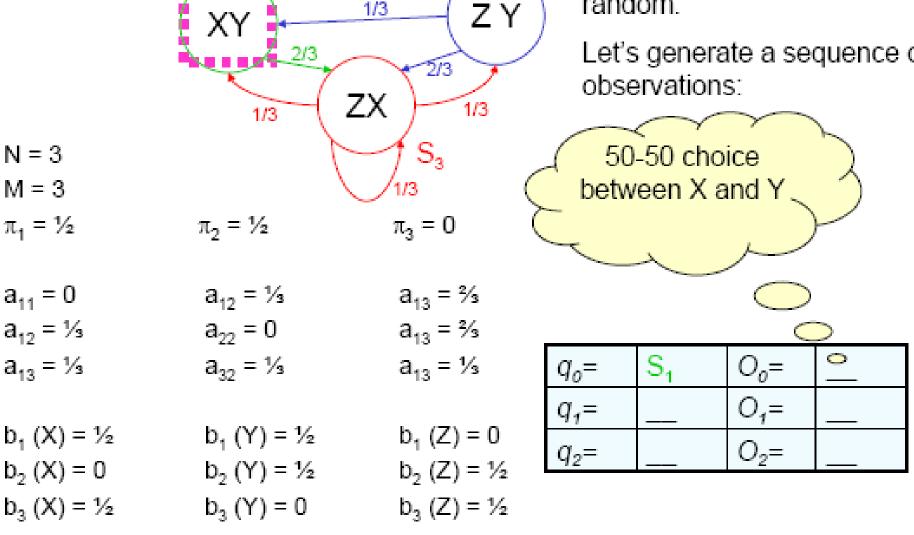
1/3

1/3

Start randomly in state 1 or 2

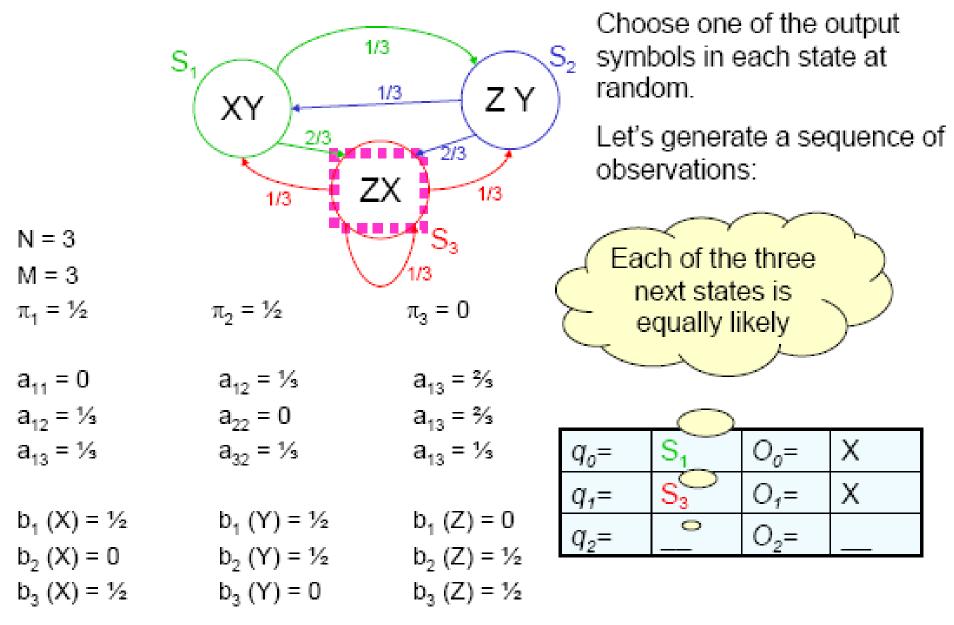
Choose one of the output S, symbols in each state at random.

> Let's generate a sequence of observations:

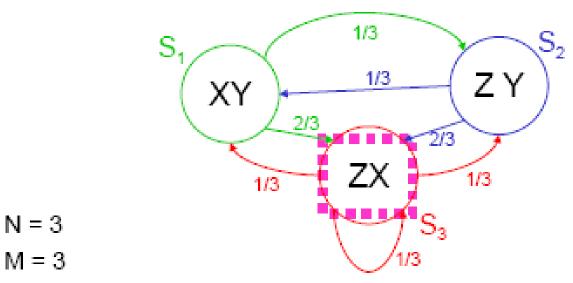


Choose one of the output 1/3S, symbols in each state at S. random. 1/3 ΖY Let's generate a sequence of 2/3 2/3 observations: ZΧ 1/3 1/3S₃ N = 3Goto S₃ with probability 2/3 or 13 M = 3S₂ with prob. 1/3 $\pi_1 = \frac{1}{2}$ $\pi_3 = 0$ $\pi_2 = \frac{1}{2}$ a₁₁ = 0 a₁₂ = 1/3 a₁₃ = % a₁₂ = ⅓ a₂₂ = 0 a₁₃ = % a₁₃ = ½ a₃₂ = 1/3 $a_{13} = \frac{1}{3}$ O_0= Х $q_o =$ 0 O₁= $q_1 =$ $b_1(Z) = 0$ $b_1(X) = \frac{1}{2}$ $b_1(Y) = \frac{1}{2}$ O,= $q_2 =$ $b_2(Z) = \frac{1}{2}$ $b_{2}(X) = 0$ $b_{2}(Y) = \frac{1}{2}$ $b_3(X) = \frac{1}{2}$ $b_3(Y) = 0$ $b_3(Z) = \frac{1}{2}$

Choose one of the output 1/3 S_2 symbols in each state at S random. 1/3 ΖY XY Let's generate a sequence of 2/3 2/3 observations: ZΧ 1/3 1/3N = 350-50 choice between Z and X M = 3I3 $\pi_3 = 0$ $\pi_1 = \frac{1}{2}$ $\pi_2 = \frac{1}{2}$ a₁₁ = 0 a₁₂ = ⅓ a₁₃ = % a₁₂ = 1/3 a₂₂ = 0 $a_{13} = \frac{2}{3}$ a₁₃ = 1/3 a₃₂ = 1/3 a₁₃ = 1/3 S₁ $O_0 =$ $q_0 =$ S_3 \bigcirc O₁= $q_1 =$ $b_1(Z) = 0$ $b_1(X) = \frac{1}{2}$ $b_1(Y) = \frac{1}{2}$ $O_2 =$ $q_2 =$ $b_{2}(X) = 0$ $b_2(Y) = \frac{1}{2}$ $b_2(Z) = \frac{1}{2}$ $b_3(X) = \frac{1}{2}$ $b_3(Y) = 0$ $b_3(Z) = \frac{1}{2}$



Choose one of the output 1/3 symbols in each state at S, S. random. 1/3 ΖY XY Let's generate a sequence of 2/32/3observations: ZΧ 1/3 1/3N = 3 50-50 choice between Z and X M = 3 13 $\pi_3 = 0$ $\pi_1 = \frac{1}{2}$ $\pi_2 = \frac{1}{2}$ a₁₁ = 0 a₁₂ = 1/3 a₁₃ = % a₁₃ = ¾ a₁₂ = 1/3 $a_{22} = 0$ Х a₁₃ = ½ $a_{13} = \frac{1}{3}$ S₁ a₃₂ = 1/3 $q_0 =$ O_=_ S_3 $O_1 =$ Х $q_1 =$ $b_1(X) = \frac{1}{2}$ $b_1(Y) = \frac{1}{2}$ $b_1(Z) = 0$ \bigcirc S_3 O2= $q_2 =$ b₂ (Z) = ½ $b_{2}(X) = 0$ $b_2(Y) = \frac{1}{2}$ $b_3(X) = \frac{1}{2}$ $b_3(Y) = 0$ $b_3(Z) = \frac{1}{2}$



$$\pi_1 = \frac{1}{2}$$
 $\pi_2 = \frac{1}{2}$ $\pi_3 = 0$

 $a_{11} = 0$ $a_{12} = \frac{1}{3}$ $a_{13} = \frac{2}{3}$ $a_{13} = \frac{2}{3}$

$$a_{12} = \frac{1}{3}$$
 $a_{22} = 0$ $a_{13} = \frac{1}{3}$
 $a_{13} = \frac{1}{3}$ $a_{32} = \frac{1}{3}$ $a_{13} = \frac{1}{3}$

$$b_1(X) = \frac{1}{2}$$
 $b_1(Y) = \frac{1}{2}$ $b_1(Z) = 0$ $b_2(X) = 0$ $b_2(Y) = \frac{1}{2}$ $b_2(Z) = \frac{1}{2}$ $b_3(X) = \frac{1}{2}$ $b_3(Y) = 0$ $b_3(Z) = \frac{1}{2}$

Start randomly in state 1 or 2

Choose one of the output symbols in each state at random.

Let's generate a sequence of observations:

$q_o =$	S ₁	O ₀ =	Х
<i>q</i> ₁ =	S ₃	O1=	Х
q2=	S3	O2=	Ζ

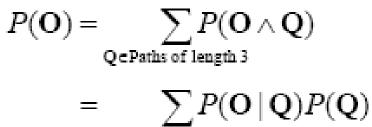
State Estimation

	S1 XY 2/3	/3 1/3 2/3	S ₂ Choose one of the output symbols in each state at random. Let's generate a sequence of			
N = 3 M = 3	1/3	$X = \frac{2^{13}}{1^{13}}$	observat This is observ	what t		
π ₁ = ½ a ₁₁ = 0	π ₂ = ½ a ₁₂ = ¼	π ₃ = 0 a ₁₃ = ⅔		with		
$a_{12} = \frac{1}{3}$ $a_{13} = \frac{1}{3}$	a ₂₂ = 0 a ₃₂ = 1/3	a ₁₃ = ² / ₃ a ₁₃ = ¹ / ₃	$q_o = ?$	O _o =	X	٦
$b_1(X) = \frac{1}{2}$	$b_1(Y) = \frac{1}{2}$	b ₁ (Z) = 0	$q_1 = ?$	0 ₁ =	Х	
$b_2(X) = 0$ $b_3(X) = \frac{1}{2}$	$b_2(Y) = \frac{1}{2}$ $b_3(Y) = 0$	b ₂ (Z) = ½ b ₃ (Z) = ½	q ₂ = ?	O ₂ =	Z	

Prob. of a series of observations

What is $P(\mathbf{O}) = P(O_1 O_2 O_3) = P(O_1 = X ^ O_2 = X ^ O_3 = Z)?$

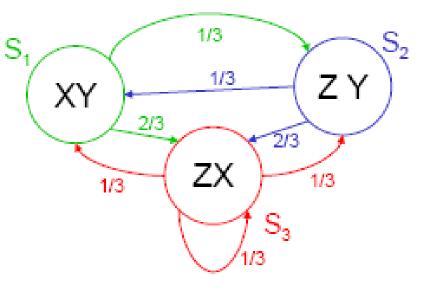
Slow, stupid way:

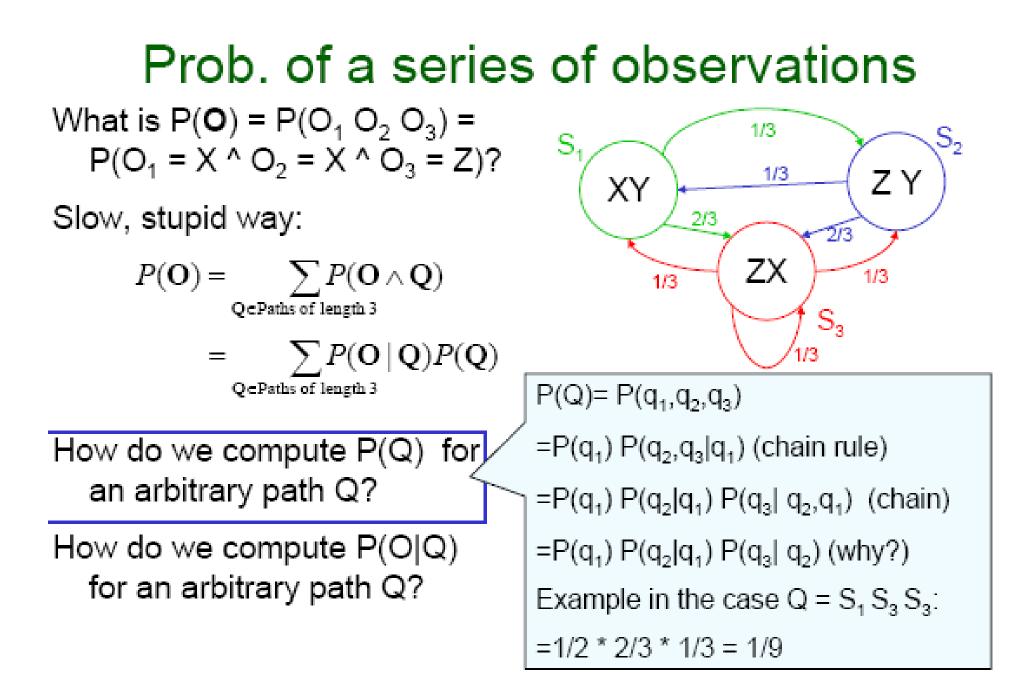


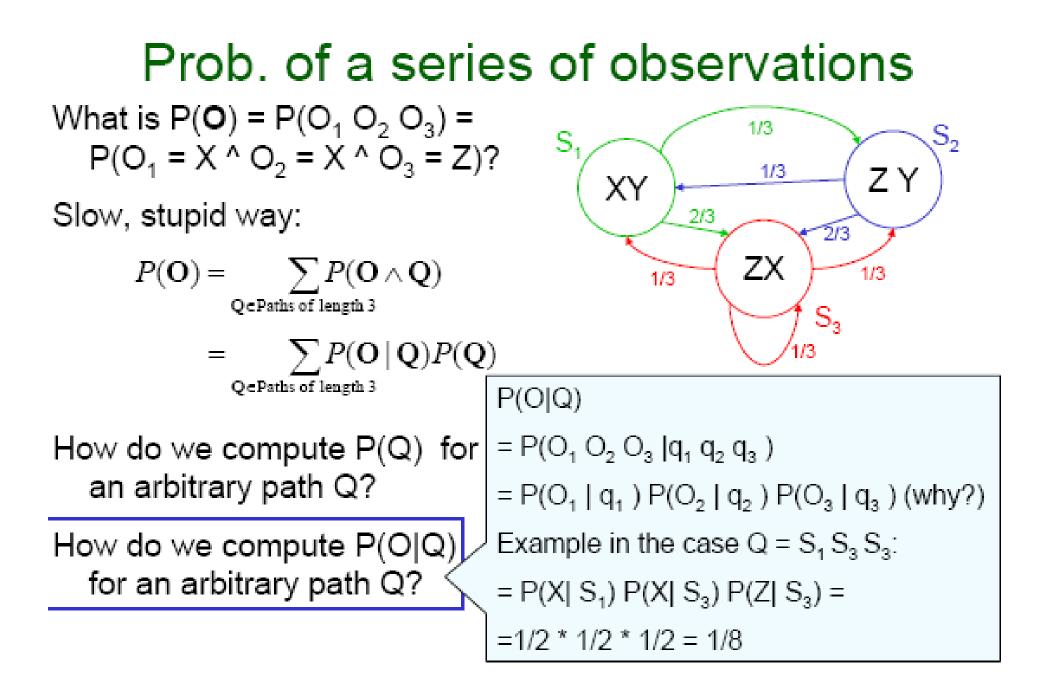
QePaths of length 3

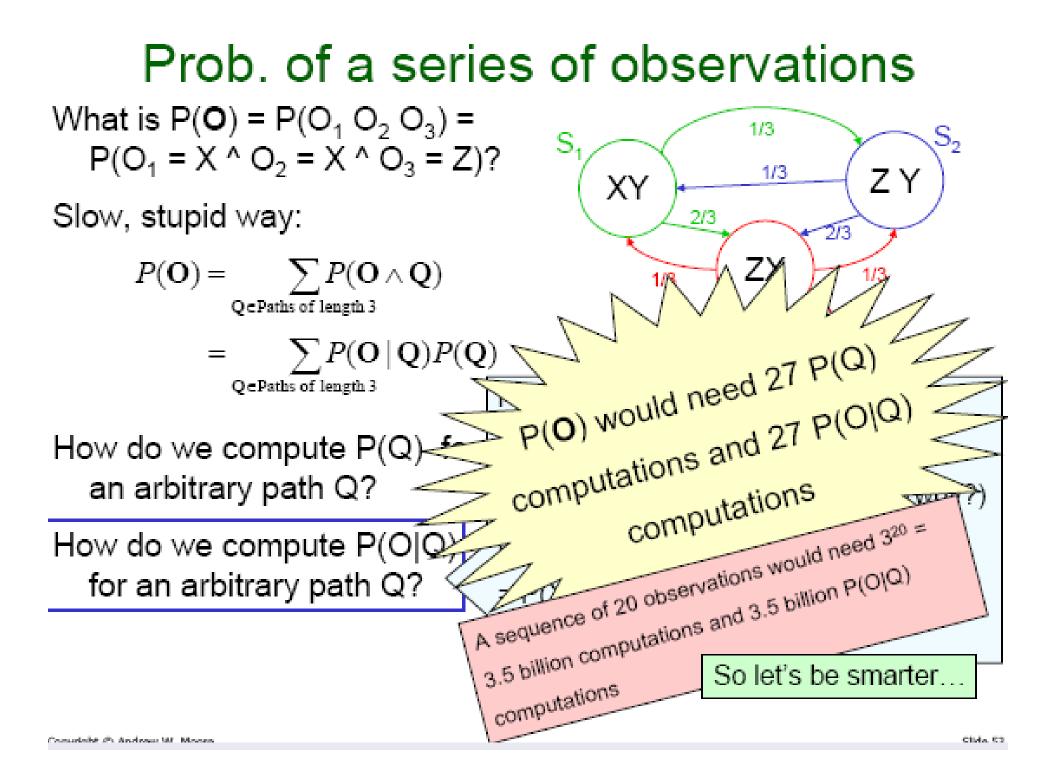
How do we compute P(Q) for an arbitrary path Q?

How do we compute P(O|Q) for an arbitrary path Q?









The Prob. of a given series of observations, non-exponential-cost-style

Given observations O₁ O₂ ... O_T

Define

α_t(i) = P(O₁ O₂ ... O_t ∧ q_t = S_i | λ) where 1 ≤ t ≤ T
 α_t(i) = Probability that, in a random trial,
 We'd have seen the first t observations
 We'd have ended up in S_i as the t'th state visited.

In our example, what is $\alpha_2(3)$?

$\alpha_t(i)$: easy to define recursively

 $\alpha_t(i) = P(O_1 \ O_2 \ \dots \ O_T \ \land q_t = S_i \ | \ \lambda) \ (\alpha_t(i) \text{ can be defined stupidly by considering all paths length `t". How?)}$

$$\begin{split} \alpha_1(i) &= \mathsf{P}(O_1 \land q_1 = S_i) \\ &= \mathsf{P}(q_1 = S_i) \mathsf{P}(O_1 | q_1 = S_i) \\ &= \qquad \text{what?} \\ \alpha_{t+1}(j) &= \mathsf{P}(O_1 O_2 \dots O_t O_{t+1} \land q_{t+1} = S_j) \\ &= \end{split}$$

$\alpha_t(i)$: easy to define recursively

 $\alpha_t(i) = P(O_1 \ O_2 \ \dots \ O_T \ \land q_t = S_i \ | \ \lambda) \ (\alpha_t(i) \text{ can be defined stupidly by considering all paths length "t". How?)}$

$$\begin{aligned} \alpha_{1}(i) &= P(O_{1} \land q_{1} = S_{i}) \\ &= P(q_{1} = S_{i})P(O_{1}|q_{1} = S_{i}) \\ &= what? \\ \alpha_{t+1}(j) &= P(O_{1}O_{2}...O_{t}O_{t+1} \land q_{t+1} = S_{j}) \\ &= \sum_{i=1}^{N} P(O_{1}O_{2}...O_{t} \land q_{t} = S_{i} \land O_{t+1} \land q_{t+1} = S_{j}) \\ &= \sum_{i=1}^{N} P(O_{t+1}, q_{t+1} = S_{j}|O_{1}O_{2}...O_{t} \land q_{t} = S_{i})P(O_{1}O_{2}...O_{t} \land q_{t} = S_{i}) \\ &= \sum_{i} P(O_{t+1}, q_{t+1} = S_{j}|q_{t} = S_{i})\alpha_{t}(i) \\ &= \sum_{i} P(q_{t+1} = S_{j}|q_{t} = S_{i})P(O_{t+1}|q_{t+1} = S_{j})\alpha_{t}(i) \\ &= \sum_{i} a_{ij}b_{j}(O_{t+1})\alpha_{t}(i) \end{aligned}$$

in our example

$$\alpha_{t}(i) = P(O_{1}O_{2}..O_{t} \land q_{t} = S_{i}|\lambda)$$

$$\alpha_{1}(i) = b_{i}(O_{1})\pi_{i}$$

$$\alpha_{t+1}(j) = \sum_{i} a_{ij}b_{j}(O_{t+1})\alpha_{t}(i)$$
WE SAW $O_{1}O_{2}O_{3} = XXZ$

$$\alpha_{1}(1) = \frac{1}{4} \qquad \alpha_{1}(2) = 0 \qquad \alpha_{1}(3) = 0$$

$$\alpha_{2}(1) = 0 \qquad \alpha_{2}(2) = 0 \qquad \alpha_{2}(3) = \frac{1}{12}$$

$$\alpha_{3}(1) = 0 \qquad \alpha_{3}(2) = \frac{1}{72} \qquad \alpha_{3}(3) = \frac{1}{72}$$

Easy Question

We can cheaply compute

$$\alpha_t(i) \texttt{=} \mathsf{P}(\mathsf{O}_1\mathsf{O}_2\ldots\mathsf{O}_t \land \mathsf{q}_t\texttt{=} \mathsf{S}_i)$$

(How) can we cheaply compute

 $P(O_1O_2...O_t)$?

(How) can we cheaply compute $P(q_t {=} S_i | O_1 O_2 ... O_t)$

Easy Question

We can cheaply compute

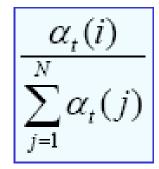
$$\alpha_t(i) = P(O_1O_2...O_t \land q_t = S_i)$$

 $P(O_1O_2)$.

(How) can we cheaply compute

$$..O_t)$$
 ?
$$\sum_{i=1}^N \alpha_t(i)$$

(How) can we cheaply compute $P(q_t = S_i | O_1 O_2 ... O_t)$



Most probable path given observations

What's most probable path given $O_1 O_2 \dots O_T$, i.e. What is argmax $P(Q|O_1O_2...O_T)$? Slow, stupid answer : argmax $P(Q|O_1O_2...O_T)$ 0 $= \underset{Q}{\operatorname{argmax}} \frac{P(O_1 O_2 \dots O_T | Q) P(Q)}{P(O_1 O_2 \dots O_T)}$ = argmax $P(O_1 O_2 ... O_T | Q) P(Q)$

Efficient MPP computation

We're going to compute the following variables:

$$\begin{array}{lll} \delta_t(i) = & max & P(q_1 \; q_2 \; . \; q_{t-1} \land q_t = S_i \land O_1 \; . \; O_t) \\ & q_1 q_2 . \cdot q_{t-1} \end{array}$$

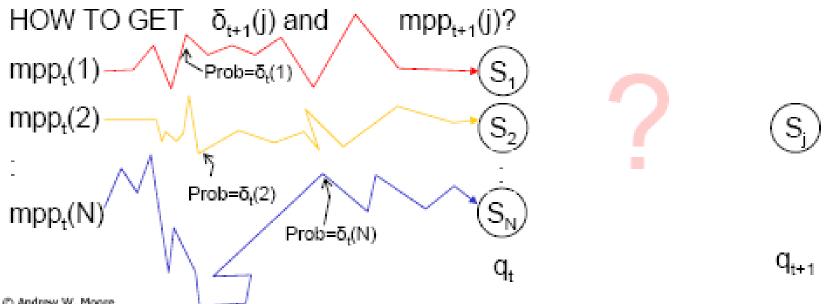
= The Probability of the path of Length t-1 with the maximum chance of doing all these things:

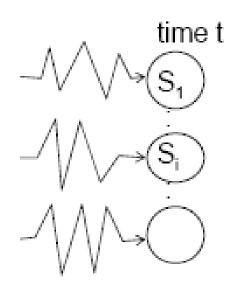
> ...OCCURING and ...ENDING UP IN STATE S_i and ...PRODUCING OUTPUT O₁...O_t

- DEFINE: mpp_t(i) = that path
- So: $\delta_t(i) = Prob(mpp_t(i))$

$$\begin{split} & \underset{\text{argmax}}{\text{max}} \quad \mathbb{P}(q_1 q_2 \dots q_{t-1} \land q_t = S_i \land O_1 O_2 \dots O_t) \\ & \underset{\text{argmax}}{\text{argmax}} \\ & mpp_t(i) = q_1 q_2 \dots q_{t-1} \quad \mathbb{P}(q_1 q_2 \dots q_{t-1} \land q_t = S_i \land O_1 O_2 \dots O_t) \\ & \delta_1(i) = \text{one choice } \mathbb{P}(q_1 = S_i \land O_1) \\ & = \mathbb{P}(q_1 = S_i) \mathbb{P}(O_1 | q_1 = S_i) \\ & = \pi_i b_i(O_1) \end{split}$$

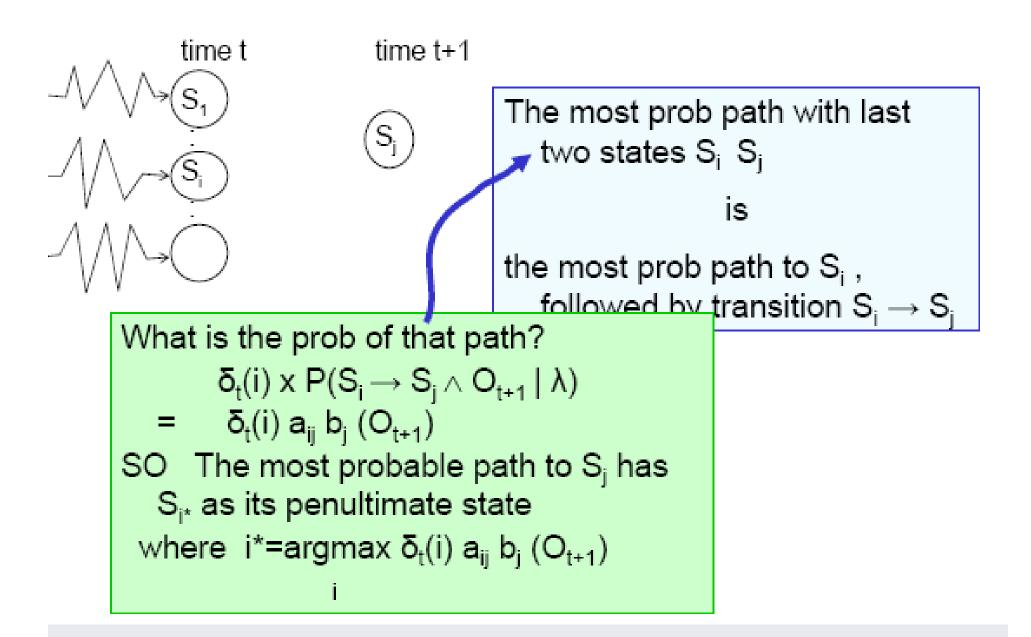
Now, suppose we have all the δ_t(i)'s and mpp_t(i)'s for all i.

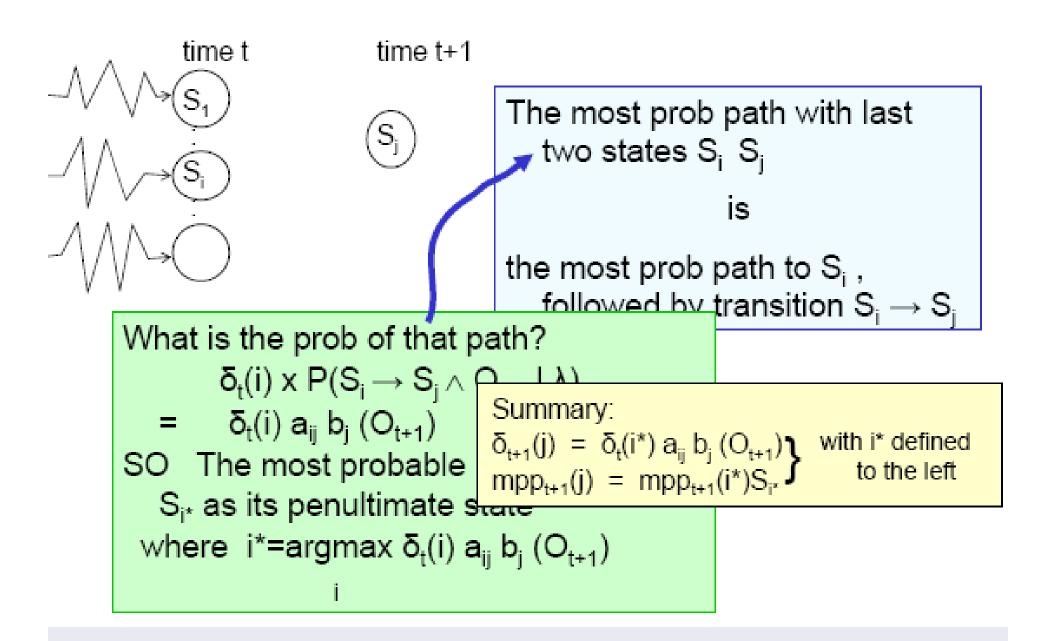




time t+1

The most prob path with last two states $S_i S_j$ is the most prob path to S_i , followed by transition $S_i \rightarrow S_i$





Inferring an HMM

Remember, we've been doing things like

```
P(O<sub>1</sub> O<sub>2</sub> .. O<sub>T</sub> | λ )
```

That " λ " is the notation for our HMM parameters.

<u>Now</u> We have some observations and we want to estimate λ from them.

AS USUAL: We could use

(i) MAX LIKELIHOOD $\lambda = \operatorname{argmax} P(O_1 .. O_T | \lambda)$ λ

(ii) BAYES

Work out P($\lambda \mid O_1 .. O_T$)

and then take E[λ] or max P($\lambda | O_1 .. O_T$) λ

Max likelihood HMM estimation

Define

$$\begin{split} & \gamma_t(i) = \mathsf{P}(\mathsf{q}_t = \mathsf{S}_i \mid \mathsf{O}_1\mathsf{O}_2...\mathsf{O}_T \ , \ \lambda \) \\ & \epsilon_t(i,j) = \mathsf{P}(\mathsf{q}_t = \mathsf{S}_i \land \mathsf{q}_{t+1} = \mathsf{S}_j \mid \mathsf{O}_1\mathsf{O}_2...\mathsf{O}_T \ , \lambda \) \end{split}$$

γ_t(i) and ε_t(i,j) can be computed efficiently ∀i,j,t (Details in Rabiner paper)

 $\sum_{t=1}^{T-1} \gamma_t(i) = \text{Expected number of transitions} \\ \text{out of state i during the path}$

 $\sum_{t=1}^{T-1} \mathcal{E}_t(i, j) = \begin{array}{l} \text{Expected number of transitions from} \\ \text{state i to state j during the path} \end{array}$

$$\begin{split} \gamma_t(i) &= \mathsf{P}\big(q_t = S_i \big| O_1 O_2 ... O_T, \lambda\big) \\ \varepsilon_t(i, j) &= \mathsf{P}\big(q_t = S_i \land q_{t+1} = S_j \big| O_1 O_2 ... O_T, \lambda\big) \\ \sum_{t=1}^{T-1} \gamma_t(i) &= \text{expected number of transitions out of state i during path} \\ \sum_{t=1}^{T-1} \varepsilon_t(i, j) &= \text{expected number of transitions out of i and into j during path} \end{split}$$

HMM estimation

$$\begin{split} & \operatorname{Notice} \frac{\sum\limits_{t=1}^{T-1} \varepsilon_t(i, j)}{\sum\limits_{t=1}^{T-1} \gamma_t(i)} = \frac{\begin{pmatrix} \operatorname{expected frequency} \\ i \to j \end{pmatrix}}{\begin{pmatrix} \operatorname{expected frequency} \\ i \end{pmatrix}} \\ & = \operatorname{Estimate of Prob}(\operatorname{Next state} S_j | \operatorname{This state} S_i) \\ & \operatorname{We can re - estimate} \\ & a_{ij} \leftarrow \frac{\sum \varepsilon_t(i, j)}{\sum \gamma_t(i)} \\ & \operatorname{We can also re - estimate} \\ & b_j(O_k) \leftarrow \cdots \qquad (\operatorname{See Rabiner}) \end{split}$$

We want
$$a_{ij}^{\text{new}} = \text{new}$$
 estimate of $P(q_{t+1} = s_j | q_t = s_i)$

We want
$$a_{ij}^{\text{new}} = \text{new estimate of } P(q_{t+1} = s_j | q_t = s_i)$$

$$= \frac{\text{Expected \# transitions } i \to j | \lambda^{old}, O_1, O_2, \cdots O_T}{\sum_{k=1}^{N} \text{Expected \# transitions } i \to k | \lambda^{old}, O_1, O_2, \cdots O_T}$$

We want
$$a_{ij}^{\text{new}} = \text{new}$$
 estimate of $P(q_{t+1} = s_j | q_t = s_i)$

$$= \frac{\text{Expected \# transitions } i \rightarrow j | \lambda^{old}, O_1, O_2, \cdots O_T}{\sum_{k=1}^{N} \text{Expected \# transitions } i \rightarrow k | \lambda^{old}, O_1, O_2, \cdots O_T}$$

$$= \frac{\sum_{k=1}^{T} P(q_{t+1} = s_j, q_t = s_i | \lambda^{old}, O_1, O_2, \cdots O_T)}{\sum_{k=1}^{N} \sum_{t=1}^{T} P(q_{t+1} = s_k, q_t = s_i | \lambda^{old}, O_1, O_2, \cdots O_T)}$$

We want
$$a_{ij}^{\text{new}} = \text{new estimate of } P(q_{t+1} = s_j \mid q_t = s_i)$$

$$= \frac{\text{Expected \# transitions } i \rightarrow j \mid \lambda^{old}, O_1, O_2, \cdots O_T}{\sum_{k=1}^{N} \text{Expected \# transitions } i \rightarrow k \mid \lambda^{old}, O_1, O_2, \cdots O_T}$$

$$= \frac{\sum_{t=1}^{T} P(q_{t+1} = s_j, q_t = s_i \mid \lambda^{old}, O_1, O_2, \cdots O_T)}{\sum_{k=1}^{N} \sum_{t=1}^{T} P(q_{t+1} = s_k, q_t = s_i \mid \lambda^{old}, O_1, O_2, \cdots O_T)}$$

$$= \frac{S_{ij}}{\sum_{k=1}^{N} S_{ik}} \text{ where } S_{ij} = \sum_{t=1}^{T} P(q_{t+1} = s_j, q_t = s_i, O_1, \dots O_T \mid \lambda^{\text{old}})$$
$$= \text{What?}$$

We want
$$a_{ij}^{\text{new}} = \text{new estimate of } P(q_{t+1} = s_j \mid q_t = s_i)$$

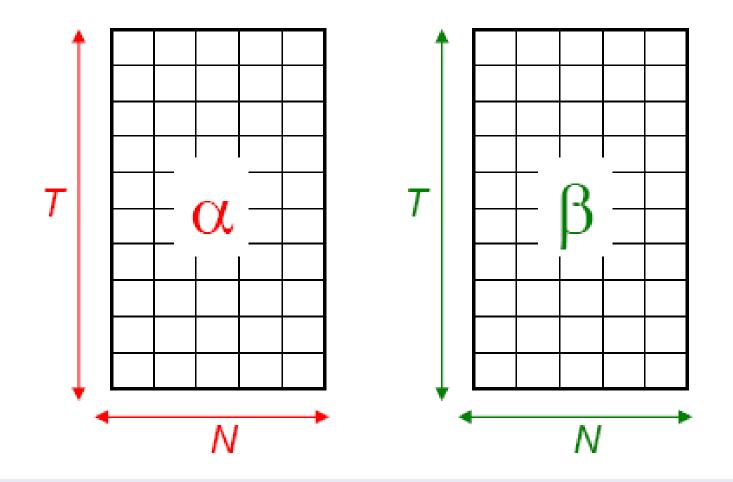
$$= \frac{\text{Expected \# transitions } i \rightarrow j \mid \lambda^{old}, O_1, O_2, \cdots O_T}{\sum_{k=1}^{N} \text{Expected \# transitions } i \rightarrow k \mid \lambda^{old}, O_1, O_2, \cdots O_T}$$

$$= \frac{\sum_{k=1}^{T} P(q_{t+1} = s_j, q_t = s_i \mid \lambda^{old}, O_1, O_2, \cdots O_T)}{\sum_{k=1}^{N} \sum_{t=1}^{T} P(q_{t+1} = s_k, q_t = s_i \mid \lambda^{old}, O_1, O_2, \cdots O_T)}$$

$$= \frac{S_{ij}}{\sum_{k=1}^{N} S_{ik}} \text{ where } S_{ij} = \sum_{t=1}^{T} P(q_{t+1} = s_j, q_t = s_i, O_1, \cdots O_T \mid \lambda^{\text{old}})$$
$$= a_{ij} \sum_{t=1}^{T} \alpha_t(i) \beta_{t+1}(j) b_j(O_{t+1})$$

We want
$$a_{ij}^{\text{new}} = S_{ij} / \sum_{k=1}^{N} S_{ik}$$
 where $S_{ij} = a_{ij} \sum_{t=1}^{T} \alpha_t(i) \beta_{t+1}(j) b_j(O_{t+1})$

We want
$$a_{ij}^{\text{new}} = S_{ij} / \sum_{k=1}^{N} S_{ik}$$
 where $S_{ij} = a_{ij} \sum_{t=1}^{T} \alpha_t(i) \beta_{t+1}(j) b_j(O_{t+1})$



EM for HMMs

If we knew λ we could estimate EXPECTATIONS of quantities such as

Expected number of times in state i

Expected number of transitions $i \rightarrow j$

If we knew the quantities such as

Expected number of times in state i

Expected number of transitions i \rightarrow j

We could compute the MAX LIKELIHOOD estimate of

 $\boldsymbol{\lambda} = \langle \{\boldsymbol{a}_{ij}\}, \{\boldsymbol{b}_i(j)\}, \, \boldsymbol{\pi}_i \rangle$

Roll on the EM Algorithm...

EM 4 HMMs

- 1. Get your observations O₁...O_T
- 2. Guess your first λ estimate $\lambda(0)$, k=0
- 3. k = k+1
- 5. Compute expected freq. of state i, and expected freq. $i{\rightarrow}j$
- 6. Compute new estimates of $a_{ij},\,b_j(k),\,\pi_i\;$ accordingly. Call them $\lambda(k+1)$
- 7. Goto 3, unless converged.
- Also known (for the HMM case) as the BAUM-WELCH algorithm.

Bad News

There are lots of local minima

Good News

The local minima are usually adequate models of the data.

Notice

- EM does not estimate the number of states. That must be given.
- Often, HMMs are forced to have some links with zero probability. This is done by setting a_{ij}=0 in initial estimate λ(0)
- Easy extension of everything seen today: HMMs with real valued outputs

Ded Mar

Trade-off between too few states (inadequately modeling the structure in the data) and too many (fitting the noise).

- There are lots of Thus #states is a regularization parameter.
 - Blah blah blah... bias variance tradeoff...blah blah...cross-validation...blah blah....AIC,
- The local minim BIC....blah blah (same ol' same ol') data.

 EM does not estimate the number of states. That must be given.

tice

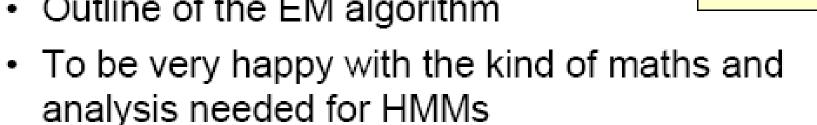
- Often, HMMs are forced to have some links with zero probability. This is done by setting a_{ij}=0 in initial estimate λ(0)
- Easy extension of everything seen today: HMMs with real valued outputs

What You Should Know

DON'T PANIC

starts on p. 257.

- What is an HMM ?
- Computing (and defining) α_t(i)
- The Viterbi algorithm
- Outline of the EM algorithm



- Fairly thorough reading of Rabiner* up to page 266* [Up to but not including "IV. Types of HMMs"].
- *L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition," Proc. of the IEEE, Vol.77, No.2, pp.257--286, 1989.

http://ieeexplore.ieee.org/iel5/5/698/00018626.pdf?arnumber=18626

Outline

Introduction to Temporal Processes

- Markov chains
- Hidden Markov models

Discrete-State HMMs

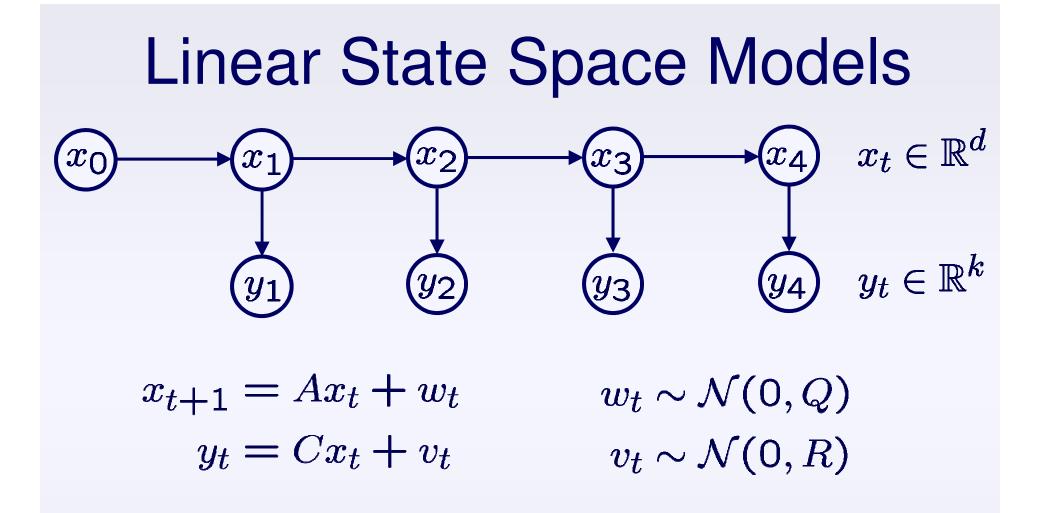
- > Inference: Filtering, smoothing, Viterbi, classification
- Learning: EM algorithm

Continuous-State HMMs

- Linear state space models: Kalman filters
- > Nonlinear dynamical systems: Particle filters

Applications and Extensions

Discrete HMMs: Observations $y_t \in \{1, 2, \dots, M\}$ **Discrete Observations** $p(y_t \mid x_t = 1) = \begin{bmatrix} 0.3 \\ 0.1 \\ 0.5 \\ 0.1 \end{bmatrix} \quad p(y_t \mid x_t = 2) = \begin{bmatrix} 0.2 \\ 0.2 \\ 0.1 \\ 0.5 \end{bmatrix}$ $y_t \in \mathbb{R}^k$ **Continuous Observations** $p(y_t | x_t = 1)$ $p(y_t | x_t = 2)$



States & observations jointly Gaussian:
 All marginals & conditionals Gaussian
 Linear transformations remain Gaussian

Simple Linear Dynamics

Brownian Motion

Constant Velocity

