Motion and path planning in a nutshell

Prof. Hadas Kress-Gazit
MAE
Guest lecture: CS 4758/6758
March 15, 2012
easy

not as easy
“How do I get to point B?”

• Motion planning
 – Bug algorithms
 – Roadmaps, cell decomposition
 – Potential functions
 – Sampling-based methods
“How do I get to point B?”

• Motion planning
 – Bug algorithms
 – Roadmaps, cell decomposition
 – Potential functions (“vanilla” potential functions)
 – Sampling-based methods (RRT)
Potential functions – basic idea

Energy function over C_{free} (obstacle-free configuration space)

Ideally global minimum at goal

∇
Definitions

• Potential function
 \[U : \mathbb{R}^n \rightarrow \mathbb{R} \]

• Gradient
 \[\nabla U(q) = \begin{bmatrix} \frac{\partial U}{\partial q_1}(q) \\ \vdots \\ \frac{\partial U}{\partial q_n}(q) \end{bmatrix} \]

• Control
 \[\dot{q} = -\nabla U(q) \]
Attractive force = go to goal

\[u(q, q_{\text{goal}}) = \| q - q_{\text{goal}} \| \]

\[U_{\text{attr}} = C \cdot u(q, q_{\text{goal}}) \]

\[\nabla U_{\text{attr}} = \frac{C}{u(q, q_{\text{goal}})} \cdot (q - q_{\text{goal}}) \]

\[U_{\text{attr}} = \frac{1}{2} C \cdot u(q, q_{\text{goal}})^2 \]

\[\nabla U_{\text{attr}} = C \cdot (q - q_{\text{goal}}) \]
Repulsive force = keep away from obstacles

Distance from obstacle

$$d_i(q) = \min_{q^* \in \text{obs}} d(q, q^*)$$

$$U_{rep} = \begin{cases} \frac{1}{2} < \left(\frac{1}{d_i(q)} - \frac{1}{Q} \right)^2 \\ 0 \end{cases}$$

$$d_i(q) \leq Q$$

$$d_i(q) > Q$$

$$Q > 0$$
Potential function

\[U(q) = U_{at} + \sum_{obs} U_{rep_i}(q) \]

\(\bar{r}_i \)

cannot complete (every initial point will reach the goal *)
Problem

Local minima!

Solutions:
- Navigation functions
- Potential functions
 over cell decomposition
Problem (2)

Complex environment
Different approach - samples

- Probabilistically\resolution complete
- Good for complex configuration spaces
Single queries

- Find a path from q_{init} to q_{goal}
- Idea:
 - grow tree(s) spanning “relevant” space
 - Connect tree(s)
Rapidly-Exploring Random Trees (RRT)
RRTs

Algorithm:

Given: \(q_{\text{start}}, q_{\text{end}}, \text{step-size}, n = \# \text{ of attempts to grow the tree} \)

Find: \(G = (V, E) \) \(v \in \mathbb{R}^n \) \(e \in \mathbb{R}^n \times \mathbb{R}^n \)

Init: \(V = \{ q_{\text{start}} \} \) \(E = \emptyset \)

For \(i = 1 \) to \(n \):

- sample \(q_{\text{rand}} \) \& \(C_{\text{free}} \)

- find \(q_{\text{near}} = \text{closest point} \) \(q \in V \) to \(q_{\text{rand}} \)

- generate \(q_{\text{new}} \): point on line \((q_{\text{near}}, q_{\text{rand}}) \)

- if \(q_{\text{new}} \in C_{\text{free}} \) AND \((q_{\text{near}}, q_{\text{new}}) \in C_{\text{free}} \)

then \(V = V \cup \{ q_{\text{new}} \} \), \(E = E \cup \{ (q_{\text{near}}, q_{\text{new}}) \} \)
- try to connect & new to send it successful -> done!