
Optimally Energy-Efficient Bipedal Gaits on Varying Slopes

Nicolas Champagne-Williamson (nac52)

Abstract— The purpose of my research is to discover
optimally efficient control trajectories for the Ranger
robot over a range of slopes and to use these to improve
the robots robustness while walking. Optimal control
solutions are found by the SNOPT optimization package
in Matlab for slopes of -10 to 10 degrees. The estimator
uses the inertial measurement unit and robot kinematics
to calculate the approximate ground slope in the world
frame. The trajectories are discretized and approximated
using a finite state machine paradigm with parameters
set according to derived functions of the measured slope.
However, due to physical limitations of the robot, this
technique was unable to allow the robot to walk up even
a modest 2 degree slope.

I. BACKGROUND

Walking robots are awesome! From a scientific
perspective, their artificial gaits can help researchers
investigate the dynamics of walking and control. From
an engineering perspective, robots with legs may be
able to travel in places inaccessible to wheeled robots,
such as up stairs or through rubble during search and
rescue operations. These motivations have encouraged
the creation of innumerable examples of robot walking,
and yet these robots continue to perform below the level
required to play useful roles in society. For example,
Cornell’s Ranger robot has reliably walked over half a
marathon on one charge... around Barton’s indoor track.
Give it a slope of more than 1 degree to climb and it
simply can’t do it. There is one scary section of track
where Ranger consistently falls over, dubbed ”Mount
Barton”, and we take care to always avoid this section
of track, even though in reality the slope there is so
slight that most runners don’t even realize it exists!

Currently, the most common way to quantify stability
of bipedal walking is with the Zero-Moment Point
(ZMP) criteria which, if met, ensure dynamic stability.
However, the gaits generated with ZMP satisfaction
are often slow and awkward, far from the smooth
and controlled walking of animals and humans, not to
mention use about 20 times the energy. Additionally,

N. Champagne-Wiliamson is a student Computer Science, In-
formation Science and Cognitive Studies, Cornell University, NY
14853, USA nac52@cornell.edu

while ZMP is sufficient for stable walking, it is not
necessary; humans actually violate ZMP criteria during
toe push-off.[3] The Ranger robot took a different
approach, focusing on passive dynamics principles to
create energy efficient and smooth motions. Though it
is nominally powered (and must be for level ground or
uphill, to both fight the losses due to gravity, friction,
and collisions), much of the gait is unpowered and left
to freely swing. [2]

The general goal of my work is to make Ranger more
stable over a wide range of slopes. Optimal control
trajectories (motor torque profiles) were found offline
using dynamics equations of the robot, structural and
periodic constraints, and the SNOPT (Sparse Nonlinear
Optimization) package in Matlab. A simulation of the
robot, developed by fellow research Pranav Bhounsule,
uses these current trajectories to see how the robot
would walk given those controls. The simulator is
thought to be very accurate and has been shown to
match well against empirical walking data on level
ground. Target optimal hip velocities during the leg
swing phase and ankle positions during pushoff were
taken, and functions of slope were fitted against them.
These results were discretized into a state machine for
use on the robot, with the state variables as a function
of slope. Using an inertial measurement unit, the robot
accurately senses the current slope of the ground with
respect to the world frame and sets its optimal trajectory
accordingly.

A. The Cornell Ranger Robot

The Ranger Robot, which our lab lovingly calls a
4-legged biped, actually consists of two pairs of legs
moving together (see Figure 1, page 2). This creates
the illusion of biped walking with side to side stability,
but no fore-aft stability. There are four actuators total:
1 to swing the hip, 2 to flip the pairs of ankles up
and down (giving foot clearance), and 1 to steer the
robot by twisting the inner pair of legs. Each motor is
controlled by a separate ARM7 microcontroller built
onto what we call a satellite board. These boards run
a 2khz scheduler to control the motor and read sensor
information, and communicate with each other as well



Fig. 1. Cornell’s Ranger Robot, built by students in Prof. Andy
Ruina’s Biorobotics and Locomotion Laboratory. Photo credit:
Nicolas Champagne-Williamson

as the central ARM9 controller - the main brain - over
a Controller Area Network (CAN) bus. The main brain
runs a 500hz scheduler running a finite state-machine,
and sends sensor readings to the monitoring laptop
computer over Bluetooth. The main sensors on Ranger
are optical motor encoders, magnetic encoders at the
joints, foot-contact sensors, an Inertial Measurement
Unit (IMU), motor current sensors (for motor con-
trol), RF receiver for steering commands, buttons for
changing overall state (walking, calibrate, standby), and
safety limit switches for joint angle limits. The general
gait of Ranger is split into 4 parts: Double Stance (DS),
Pushoff, Single Stance (SS), and Heelstrike.

1) Single Stance (SS): During single stance, one foot
is on the ground, and the other leg is swinging through
the air with its foot flipped up to give ground clearance.
The main control during this phase is hip torque at the
beginning of the swing to get the leg to swing at the
desired speed, depending on current robot velocity.

2) Pushoff: During pushoff, the back ankle motors
cause the feet to flip down and give a toe pushoff.
When optimizing control for energy efficiency it turns
out that pushoff of the back foot occurs slightly before
the impact of the front foot during heelstrike, in what is
called a pre-push. Note that the feet pushing off don’t
actually cause the feet to be lifted off the ground just
yet - otherwise the robot would be running!

3) Heelstrike: After pushoff, the swing leg flips
down its feet, and it collides with the ground causing
a heelstrike. Heelstrike is detected by a deformation
sensor in the foot. There is often a swing leg retraction
before this phase.

4) Double Stance (DS): After heelstrike, both feet
are on the ground at the same time. This phase is short
but necessary in walking, because otherwise we would
be running, and also because it is the only time we
know the robot’s state without the IMU data, and so
we can reset the IMU to get rid of drift in readings.
At the end of this phase the back feet flip up, giving
ground clearance, and we enter SS.

II. APPROACH

A. Gait Optimization

The SNOPT package solves large-scale nonlinear
constraint optimizations. The way it generally works is
by using the Sequential Quadratic Programming (SQP)
method, processing QP subproblems in search direc-
tions which minimize a linearly constrained quadratic
Lagrangian by utilizing the computed Jacobian and
Hessian of the function matrix. As input to the program
we provide 1) the objective function, 2) auxiliary
functions to be constrained, 3) a set of linear and
nonlinear constraints on those functions, and 4) the
function parameters to tune. The optimizer operates
over one simulated step of the robot.

The objective function we try to minimize is a
measure of walk efficiency called the specific energy
of transport, which is essentially how far the robot can
walk for a given amount of energy per weight of the
robot. The equation for cost of transport is:

ct =
energy

weight ∗distance
(1)

ct =

∫ t
0(∑motorpower)dt +overheads∗ tstep

m∗g∗ steplength
(2)

Auxiliary functions describe the robot’s walk, and
are given by a dynamics model of Ranger which very
closely approximates the physical robot.

Constraints on the system include periodic con-
straints, such as matching velocity at the beginning and
the end of the step, and structural constraints, such as
that the foot height can only be positive (above the
ground) and that the hip should be above the feet, etc.
Lack of structural constraints allows the optimizer to
produce some amusing results, such as finding that the
robot walks upside-down, or flies through the air. A
problem I personally ran into initially occurred because



Fig. 2. The Inertial Measurement Unit (IMU, circled in red) is
used to estimate the ground slope.

the foot of the robot is round, and is represented
in the simulator as a circle. However, there were no
constraints on what part of the circle the foot is, and so
animated solutions clearly show the robot making use
of ’invisible’ portions of its foot to gain extra height!

For the optimization parameters, we split the motor
current control into piecewise linear functions, and use
the points describing that function. Both the hip and
ankle trajectories use 8 control points during SS/swing
phase, and 4 during DS. A loop runs the optimiza-
tion for each desired slope and outputs the optimized
parameters. For the initial parameter values (the ’best
guess’) we use the results of the previous optimization.
For example, at 5.5 degrees, the results for the 5
degree case are used and the optimization start its
search from that state. The code takes over an hour to
run one optimization: 15 minutes to calculate function
derivatives and an hour or more doing search iterations
- even with compiled C code instead of pure Matlab.

B. Slope Sensing

Ranger possesses an Inertial Measurement Unit
(IMU) that gives both euler angles and angular rates at
200Hz. The IMU is mounted on the starboard side of
Ranger, coaxial to the outer set of legs. Our convention
is that ’roll’ is what is normally called ’pitch’, because
that is the axis around which a bike’s wheel rolls. The
IMU is useful because it gives us the angle of the
outer leg with respect to the world frame. However,
this knowledge is not enough to estimate ground slope.
Upon heelstrike, we know that both feet are on the

Fig. 3. The robot at heelstrike. The IMU roll angle of the outer
leg is given by the blue line, and the estimated angle of the outer
leg assuming horizontal ground is given by the red line.

ground. Using this info and the joint angles of the mo-
tors (ankle and hip), the robot makes its own estimate
of the angle of the outer legs with the assumption that
it is on level ground (0 degree slope). The difference
between this estimation and the IMU roll data (plus
a small offset - the IMU is not perfectly square to
the robot1) is the local ground slope (see figure 3).
This information is vital in setting the optimal control
trajectory.

C. Finite State Machine Approximation

However, we can’t simply run the generated open-
loop current trajectory because the robot would not
be able to react to any disturbances during the step.
The solution is to discretize the gait into a finite state
machine that approximates the original function, or
what the original trajectory was trying to accomplish.
For example, instead of controlling for current, the
hip swing tries to achieve a target leg velocity or hip
angular rate. Similarly, instead of an ankle pushoff
current, a target ankle position is used instead. From
the data that SNOPT and the post-processing simulator

1The offset was found by keeping the robot exactly perpendicular
using an electronic level, and then recording the IMU roll output



gave me, I created plots of both the required ankle
target angle and the hip swing velocity as functions
of slope.

III. RESULTS AND DISCUSSION

A. Gait Optimization

The optimizations found valid solutions for all slopes
from -10 to 10 degrees. In simulation the robot found
ways to power up 10 degree slopes and waltz down
-10 degree slopes without tripping. It is likely that the
simulation could be pushed even further, but the opti-
mizations took a long time and I was more interested
in implementing the changes on the robot.

1) Downhill: In walking downhill we can see some
interesting changes to gait. One of the main problems
for this robot walking down steep slopes is that it must
rid itself of excess energy and slow down, otherwise it
will speed up until it can’t move its legs fast enough
to catch itself, and falls over. If we look at the ankle
currents in figure 7 in the appendix (the motor current
approximates ), we can see that as downhill slope
increases the pushoff disappears and then reverses. The
effect of this can be clearly seen in animations, which
show the ankle trying to stop the center of mass from
going over the stance leg, and so slow down the robot.

If we look at the hip currents going downhill in figure
8 (again, as an approximation of hip torque), we see
that the swing torque decreases - without a large loss
to angular rate - and a strange spike at the very end of
the swing before heelstrike. The current going to the
motor is in the opposite direction of the forward swing,
and so it seems (and animations confirm) that the robot
is retracting its legs quickly to strike the ground. I
posit that the purpose of this jerk is to create large
ground collisions with the foot, and therefore incur
large collisional energy losses. This helps to remove
some of the energy gained by going downhill, and aids
the robot at slowing down. Additionally, step times
become slower and step lengths become longer, further
aiding the robot to slow down.

2) Uphill: In uphill walking the robot has to fight
gravity and maintain positive velocity. Looking at ankle
current (figure 7) demonstrates that as slope increases,
pushoff power and angle both increase as well. The
step lengths decrease and step times are shorter. All of
these serve to put energy into the system by lifting the
back leg higher to help get the center of mass over the
stance foot and keep the robot moving forward.

The hip trajectories at higher uphill slopes are no
surprise either. There is a clear increase in swing

Fig. 4. Measurement of slope while walking on level ground. Ac-
tual slope varied between ±0.5 degrees. x̄ = 0.12,s = 0.33,range =
1.01

Fig. 5. Measurement of slope while walking on a slight uphill.
Actual slope went from 2.4, to 2.6, then back down to 2.4 degrees.
x̄ = 2.14

torque/current, which serves to keep the angular rate of
the hip at around the same speed, increasing it slightly
with slope.

B. Slope Sensing

The slope sensing capabilities of the robot were ad-
equate for responding to large disturbances (see figures
4, 5, 6). It is difficult to tell whether the deviations in
slope on a 0.5 degree scale were even errors, because
no floor is perfectly flat and I didn’t follow along
the floor with a level the whole route to find precise
actual slope measurements. The data has a standard
deviation of approximately 0.3 (see figure 4) which is



Fig. 6. Measurement of slope while walking on a slight downhill.
Actual slope went from -2.4, to -2.6, then back down to -2.4
degrees. x̄ =−2.81

enough accuracy for setting state machine parameters
and allowing for reactions to larger and more consistent
slope disturbances. The measurement also doesn’t have
to be the control itself is mildly stable, and so small
deviations from optimal policies keep the robot walking
- just not with optimal energy efficiency.

C. State Machine

The ankle pushoff data had a linear relationship with
slope, and so it was approximated with the line:

ankleangle(rad) = 0.26+0.045∗ slope(degrees) (3)

The hip swing velocity appeared to be quadratically
correlated to slope, and so quadratic regression was
used to generate the following curve:

hiprate(rad/s) = 1.9−0.054∗ slope+0.032∗ slope2

(4)
These functions were utilized at every heelstrike to set
the parameters of the next step.

1) Falling Down: Unfortunately there is little suc-
cess to report with actually implementing this control
on the physical robot. The equations were added to the
control and set the target hip velocity and ankle pushoff
angle at every heelstrike according to equations 3 and
4 above. Testing of the system showed the expected
normal gait on level ground. However, the robot failed
to walk up even a 2 degree slope. Checking the state
machine parameters it was using showed the theoreti-
cally correct values given the slope measurements the
robot was sensing.

So what was going wrong? It turns out that while
we tell the robot to flip its foot down by 0.35 radians,

it can’t physically do that with the motors it has and
it’s current limits. This shows a discrepancy between
the simulation and the physical robot. Possible sources
of the discrepancy are from the changes recently made
to Ranger to allow it to do it’s record-breaking 40+
mile walk, including more batteries and extra weight.
The 6-amp ankle motor limit is simply unable to lift
the robot anymore, and without this boost to height
and leg angle, is unable to walk even seemingly mild
2 degree slopes. The increased weight also makes it so
that the same movements have to get a much higher
center of mass over the stance leg. Even with hacks
such as ”At pushoff, flip down as much as possible”,
”After swinging the hip, hold the leg out” and fast
initial velocities, the robot still doesn’t get its center of
mass over the hump. It seems as though it is impossible
for Ranger to climb a 2 degree slope in his current form.

IV. CONCLUSION AND FUTURE WORK

A. Conclusion

Using optimal trajectory control is an interesting area
of research. It ’lightens the load’ on control schemes
such as PID or other methods by keeping closer to the
optimal solution based on external sensor feedback. In
this paper I have shown that it is theoretically possible
to find gaits that optimize energy efficiency and manage
to walk up and down some pretty steep slopes. Addi-
tionally, we now have an accurate algorithm for mea-
suring slope while the robot is walking, by combining
IMU data with robot kinematics. However, the physical
limitations of the robot suggest that this system is not
physically realizable for this purpose. But this does not
mean we should ignore optimal trajectory control as a
whole.

B. Future Work

Future work will need to investigate if perhaps
rewriting the entire state machine would allow us
to more closely approximate the output of the gait
optimizations. Additionally, the simulation constants
and equations will need to be changed to mirror the
new upgraded Ranger before any output can be trusted
and used to generate controls. Finally, I would like to
try this approach with other facets of Ranger’s control
(or perhaps other robots!) to keep him walking more
efficiently over a wider-range of conditions.



V. ACKNOWLEDGMENTS

I’d like to thank Andy Ruina, Professor of Theo-
retical and Applied Mechanics at Cornell University
and my research advisor; Ashutosh Saxena, Professor
of Computer Science/Mechanical Engineering at Cor-
nell University; Pranav Bhounsule & Anoop Grewal,
both wonderful Ph.D. students in the Biorobotics and
Locomotion Lab; Jason Cortell, lab manager of the
Biorobotics and Locomotion Lab.

REFERENCES

[1] Bhounsule, Pranav. Extensive discussions and adaptations of
previous work.

[2] Collins, S., Ruina, A., Tedrake, R., Wisse, M. Efficient
Bipedal Robots Based on Passive-Dynamic Walkers, Science,
307, pp1082-1085. February 2005.

[3] Pratt, J., Tedrake, R. Velocity-Based Stability Margins for Fast
Bipedal Walking, Fast Motions in Biomechanics and Robotics,
Vol. 340, pp299-324. 2006.

VI. APPENDIX



Fig. 7. Optimal current/power, position, and velocity profiles for
slopes from 5 degrees uphill to 5 degrees downhill (negative value).



Fig. 8. Optimal current/power, position, and velocity profiles for
slopes from 5 degrees uphill to 5 degrees downhill (negative value).


