CS 4758
Robot Navigation Through Exit Sign Detection

Aaron Sarna

Abstract

We designed a set of algorithms that uti-
lize the existing corridor navigation code ini-
tially created by Cooper Bills and Joyce Chen
[1] to allow an AR Drone Parrot to navi-
gate a building by steering towards exit signs.
We trained an SVM on a set of about three
hundred representative images, using a fea-
ture space defined by an image histogram, as
well as a few other features. To improve esti-
mates of the location of the exit sign, we used
a Kalman filter, whose dynamics matriz was
determined by regression over a set of several
hundred images. Finally, to navigate towards
the exit sign, we used a P-controller to adjust
the yaw of the robot, while keeping the roll
and pitch at a constant value.

1 Introduction

While the current implementation of the
corridor-following code provides functionality
to successfully and robustly follow corridors
in an indoor environment, it is limited to go-
ing straight and turning corners [1]. In or-
der to demonstrate that such capability can
be utilized for advanced navigational prob-
lems, we decided to build an application that
will navigate an AR Drone Parrot around a
building, following exit signs. Since, accord-
ing to building codes in the United States,
exit signs should form a sort of “breadcrumb
trail” from any point in the building to an es-

Michael Oleske

Andrew Hoelscher

cape point, such an application would allow
an autonomous aerial vehicle such as the AR
Drone to escape a building from any initial
point. We limited ourselves to a single floor,
since, while there is a library that will fly an
AR Drone up a flight of stairs, there is no
implementation for flying down, a non-trivial
problem in its own rights.

Once the robot has been placed in the envi-
ronment, we use the corridor-navigation code
to navigate through the corridor until our de-
tector (described below) identifies an exit sign
with enough confidence to decide to start fly-
ing towards that point in the image. We use a
P-controller to turn the robot so that the exit
sign is centered in the image. Once we have
reached the exit sign (the area of the exit sign
in the image is greater than a certain percent-
age), we decide how to act based on readings
from SONAR sensors on the front and sides
of the robot. Once we have either turned or
determined that no turn is needed, we start
to look for a new exit sign to fly towards.
Since our exit sign detector will only work if
the exit sign is large enough in the image (at
a large distance, exit signs tend to be indis-
tinguishable from small red blurs), and the
resolution of the forward-mounted camera on
the AR Drone leaves something to be desired,
this is done heuristically. This can lead to a
failure case where the robot will “pace” back
and forth between two exit signs.

Using a combination of machine learning
and computer vision techniques, we identify
the bounding box of the exit sign in the image



Figure 1: Stages in the image processing. From left to right: initial image, thresholded
image, bounding boxes

with a success rate of around 80%. The vast
majority of the errors are due to false neg-
atives, which tend to be when the exit sign
is very small. This occurs when the robot is
very far away from the exit sign, a problem
which is handled by the rest of our pipeline.
In order to correct for errors in the detec-
tion, a Kalman filter is applied to the results,
which provides a robust detector.

2 Robot

The robot used was a slightly-modified AR
Drone Parrot. In order to support the corri-
dor navigation code and our door and cor-
ner turning code, the robot was mounted
with three SONAR sensors, forward-, left-
and right-facing. These sensors communi-
cated with the computer running the code
over an XBee wireless network.

3 Algorithms and Design

3.1 Classifier

To determine where an exit sign is in an im-
age, we first run the image through a pipeline
of image processing routines. First, we per-
form color thresholding on the image. The
result is a binary image, where each white
pixel represents pixel in the original image

whose red component is above a certain value,
and whose green and blue are below another
value. Black pixels in the binary image are
pixels in the original whose values do not
meet this criterion. We then find bounding
boxes around each of the connected compo-
nents in the binary image, which represent
potential exit signs, or letters of the exit sign
(see figure 1). A bounding box is removed
if it is too small (the area is less than 20),
or if the center of the bounding box is below
the middle raster of the image. Since the AR
Drone flies below the level of the exit signs in
the hallway, all exit sign components will be
in the upper portion of the image.

Each of these bounding boxes could be part
of an exit sign, or an exit sign in entirety, so
we then feed each of these bounding boxes
through a merge step before feeding the result
to an SVM.

Figure 2: All the bounding boxes whose
features are fed into the SVM. There are 15 in
this image.



W .
Figure 3: The final bounding box.

The merge step takes two bounding boxes,
and will create a new bounding box that en-
compasses both of them if the original pair
have centers that are roughly collinear. This
is to prevent having to look at a large num-
ber of potential exit signs, and make the cor-
responding number of classification calls (see
figure 2). Additionally, if we have already
gotten an initial estimate of the location of
the exit sign, we will choose a bounding box
with a top-left point closest to the previous
location, and only look at merges between
this box and the other good boxes.

The merged bounding boxes are then fed
through the feature extraction routine, which
creates the feature vector for the SVM. The
first three values of our feature vector are the
x and y values of the top-left corner of the
bounding box and the aspect ratio (height
/ width). The remaining values are a his-
togram over the colors in the patch. Through
repeated use of k-fold cross validation, we de-
termined that the optimal number of bins for
this histogram are 15 bins for red, 7 bins for
green and 9 bins for blue, giving a feature
vector of length 15 % 7% 9 4+ 3 = 948.

At this point, we have a feature vector for
each of the merged bounding boxes, which we
feed to an SVM [2]. We choose the bound-
ing box with the highest confidence to be our
guess as an exit sign (see figure 3). Using
this method we are able to get around 80%
accuracy.

3.2 Navigation

The robot initially starts in the corridor navi-
gation routines, as described in [1]. It will fly
straight through the hallway until the classi-
fier fires on a red blob with high confidence.
We then start a Kalman filter to minimize
errors in our exit sign detection. The train-
ing of the Kalman filter is described in the
Experiments section below.

We set the pitch of the robot, which con-
trols forward motion, to a constant value, and
vary the yaw, which controls lateral motion,
to equal kp * (Iimagecenter - xea:itsign) where kp
is a proportionality constant. In other words,
we use a simple P-controller to align the cen-
ter of the exit sign with the middle column of
the image. Since the robot maintains approx-
imately a constant height, we do not attempt
to adjust or center the y-coordinate of the exit
sign. We stop moving towards the exit sign
as soon as the bounding box of the exit sign
takes up a set fraction of the image. At this
point, we decided what action to take before
beginning to look for another exit sign.

We maintained a state machine to help
us decide where to look next based on the
SONAR sensors. We first check for open
space in front of the robot. If there is no
space, we are at a wall and we turn either
left or right, whichever way has a bigger read-
ing on sonar. Although this may result in
a wrong turn, it allows for a faster decision
to be made and another exit sign should be
in view that can help the robot get back on
track. If there is space in front of the robot,
we enter a state called “looking for turn.” It
is most likely that there is a doorway or a
hallway to turn down when this occurs, so
the sonar sensors are used to detect a sud-
den increase in depth. A sudden increase in
depth will occur because an open door or a
perpendicular corridor will have deeper dis-
tance for the robot to read then the closer
wall. Readings are passed through a mean



filter to compensate for noisy sonar sensors.
The search for side depth increases and front
depth decreases is done for a fixed number of
iterations to facilitate the case where the exit
sign is indicating that we should pass straight
through an open door in front of the robot,
at which point will go back to looking for
a new exit sign. After the robot detects a
sudden side depth increase, the robot is told
to turn in this direction by setting the yaw.
This is the turn left or turn right state. It
will complete turn by using readings from the
front sonar sensor. The front sonar sensor will
originally be reading a long distance as it is
pointed down the corridor. As it turns, the
distance will get shorter and when it hits a
threshold we denote that the robot is in state
two of turning. To complete the turn, the
front sensor looks for a long distance down
the new corridor (which is through the door-
way). Once this is detected, it ends that state
by setting the pitch to go forward and we
start the procedure of looking for an exit sign
again.

However, due to a lack of functioning
SONAR sensors, we later had to transition
to an inferior version of this. Since we only
have two working SONAR sensors, and there
are none available for sale in Ithaca or the
surrounding region, we now use the built-in
rotation sensor to complete our turns. This
means that we cannot decide to move forward
if there is a large open space, since we have
no readings from the front sensor. Since we
decided that the two side sensors are more
important than the front sensor, our new al-
gorithm works as follows. When we reach
an exit sign, we decide to turn towards the
side with the most open space. We then turn
90° based on the internal rotation sensor. We
tried to decide to move forward if the two side
readings were both less than a certain value,
but this proved to be error-prone, due to the
noise of the SONAR sensors. Once we have
completed this turn, we proceed as before.

4 Experiments

4.1 Data

We have two main data sets, one used for
training the SVM, and the other used for
determining the transition matrix for the
Kalman filter.

The first set consisted of one hundred and
fifty images of exit signs, each with an ac-
companying text file describing the bound-
ing box of the sign in the image, as well as
another one hundred and fifty images with-
out exit signs, including images of hallways,
posters and other signs. This was acquired
by flying the robot manually, and saving im-
ages from the robot’s front image stream. It
includes four buildings on campus with multi-
ple floors on each building, and around thirty
distinct exit signs, each from multiple angles
and distances.

The second set is images from ten au-
tonomous flights towards exit signs with fifty
images each. Different distances and yaws
were used for the various flights and images.
We hand labeled the top-left corner of the
exit sign and its area in each image. We ran
a linear regression to determine the transition
matrix for the expected Ax and Ay based on
the previous x and y, the square root of previ-
ous area, and the yaw. We set the covariance
matrices through educated guesses, assuming
that the camera was very accurate and the
prediction would not be, just given the vari-
ability of the flight and the relatively poor fit
of the linear regression.

We are happy to contribute our labeled
datasets to publicly available databases, but
we do not know where would be an appropri-
ate place.

4.2 Off-line Experiments

Our classifier has three parameters whose val-
ues are difficult to set, namely, the number of



bins for red, blue and green colors in the im-
age histogram. We know that we wanted to
keep the number of bins somewhere between
500 and 1500, since this is roughly a good
range for SVM feature vectors, and, since exit
signs are predominately red, the number of
red bins should be slightly higher than the
number of green and blue.

In order to determine the best values for
these parameters, we ran a series of three-fold
cross validation over the SVM training image
set described above, changing the number of
bins for each time. We ranged from having
13 red bins, 7 green bins, and 7 blue bins to
15, 10 and 9 red, green and blue bins, respec-
tively. We chose these numbers due to some
informal testing done prior. The error rates
of each of the different bin combinations are
shown in figure 4 below.

Error Rate for Primary Testing

(Red, Green, Blue)

Figure 4: The error rates for the 3-fold cross
validation.

We then chose the five bins combinations
with the least error, and ran each through
a ten-fold cross validation routine. The bin
combinations with the lowest error rates were
(14, 7, 10), (14, 10, 7), (15, 7, 9), (15, 8, 8)
and (15, 9, 7). The final error rates for each
of these are shown in figure 5. Since (15, 7, 9)
had the lowest error rate on the final test, this
is the bin counts used in the final classifier.

Final Error Rate

40.00%

35.00% -

30.00%
25.00%
20.00%
15.00% -
10.00%
5.00%
0.00% T T

(14,7, 10) (14,10, 7) (15,7,9) (15, 8, 8) (15,9.7)
(Red, Green, Blue)

Figure 5: The error rates for the 10-fold cross
validation.

4.3 Robot experiments

With the classifier and Kalman filter trained
we ran a tremendous number of test flights
down many different corridors, towards many
different exit signs, which indicated to many
different types of actions, such as ”go through
this door,” or "turn down this hallway,” or
”continue straight ahead.” With every suc-
cess and failure we tweaked settings and al-
gorithms manually and gradually improved.
Some settings were far too drafty for the
robot to be able to handle, so we gave up on
those. Furthermore, most exit signs are at the
end of corridors, meaning the corridor navi-
gation code tended to enter the “Unknown”
environment before the exit sign was clearly
distinguishable in the image, meaning that,
in these cases, the robot could not even get
close to the exit sign. We had a lot of trou-
ble finding spots to work where we would not
be disturbing people and were kicked out of
a bunch of locations. We also had to deal
with extremely flaky hardware that wasted a
lot of our time. The sonar sensors repeatedly
died on us, the robot wireless cards would
not connect, two of the motors on the robot
died, and the camera mount cracked when the
robot crashed.



At this point, most of the experiments have
been relatively successful, though, due to the
greedy approach that we take to determining
the next action to take, we often choose the
wrong way to go, sometimes “pacing” back
and forth between two exit signs. With the
modified approach to the corner turning algo-
rithm, we often choose to turn at an incorrect
time, since we have no forward sensor to de-
cide if we can move forward. See the following
figures for images of the robot in action.

Figure 6: The robot about to turn and fly
through a door.

Figure 7: The robot turning around a hallway

Figure 8: Flying towards an exit sign

Figure 9: Turning through another door



5 Conclusion

We presented a set of algorithms for navigat-
ing a building by following exit signs. We
used a basic image-processing pipeline to ex-
tract features from patches of red in the im-
age and classify them using an SVM. The out-
put of the SVM is smoothed using a Kalman
filter to account for errors. The robot then
steers, using a P-controller, to the exit sign,
at which point it searches for the next exit
sign in the chain. We validated our clas-
sifier using 10-fold cross validation, and the
navigation through many robot experiments.
Though the robot had problems with mal-
functioning sensors and other hardware is-
sues, we have shown that capabilities of flying
through corridors can be utilized for more ad-
vance indoor navigational problems.

References

[1] Autonomous MAV Flight in Indoor En-
vironments using Single Image Perspec-
tive Cues, Cooper Bills, Joyce Chen,
Ashutosh Saxena. To appear in Interna-

tional Conference on Robotics and Au-
tomation (ICRA 2011), 2011

2] T. Joachims, Making large-Scale SVM
Learning Practical. Advances in Kernel
Methods - Support Vector Learning, B.
Schlkopf and C. Burges and A. Smola
(ed.), MIT-Press, 1999.



