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Abstract:

Though there are many applications of personal
robots that are developed to do useful tasks autonomously
and without any human interaction, taking instructions from a
human as the tasks get more and more advanced will
become crucial. Therefore developing systems that will allow
a robot to navigate towards and track a human as he moves
in the environment will allow us to implement more advanced
robotics tasks in the future.

Using computer vision algorithms and learning
algorithms in combination allowed us to implement such a
system on a flying robot platform, AR Drone. These
algorithms ranged from learned feature detection (face/body)
and color based detection (skin color) to image histogram
tracking. Combining these different algorithms using a
modified version of Kalman filter allowed our system to be
quite robust in terms of tracking a moving human (1m/s) in
moderately complex environments with 70% success rate in
30 trials.

I. Introduction

Increasing the interaction between a robot and a
human is crucial for accomplishing some advanced
autonomous tasks for a robot platform since these
tasks could involve helping a human or following
his/her commands. An air robot like the AR Drone
Quadrotor was our choice of such a platform to test
our tracking algorithms because of its ability to
navigate in most common environments(normal
room setting) with ease and without much need for
obstacle avoidance at human height level.

Figure 1: Quadrotor

Although detecting a human body or face in
a complex environment from a low resolution
camera image without any depth information can be
a quite a challenge, it is important to be able to
implement reliable systems on such robots since
many mobile platforms lack the hardware
capabilities (high resolution cameras, Kinect sensors
etc.) due to mobility or power concerns.

In order to develop a robust system, we
divided the task of detection and tracking into
different stages of operation. After the initial takeoff,
our AR Drone is to search its field of view for any
human faces using the face detection algorithms
that we implemented to determine if there is a
person in close range. If it is unable to find a person
in close range, it switches to the body detection
algorithm to look for humans in far distance and get
close enough with constant speed and switch back to
face tracking algorithms. Face detection is,



therefore, the main body of our approach since face
detection was more important for us in terms of
interactions with a human than the body.

Since we realized that it was almost
impossible to get good results with a single detection
algorithm for face tracking with a low resolution
camera image, we implemented many different
vision and learning algorithms and used them as
independent sensors with different reliability for a
Kalman filter that merged them into a single robust
tracking algorithm with an overall reliability
indicator. Using the output the Kalman filter in our
PID controllers for the drone allowed the robot to
adjust its altitude to the tracked person’s face level,
go towards him, keep an optimal distance (backward
motion as well) and keep his face in its field of view
by turning towards him as he moves in the
environment.

Il. Related Work

There are some of face detection algorithm
developed based on similar methods: Skin color
based face detection, Artificial Neural Network
approach and feature classifiers. Although most of
them works great in static pictures without much
blurring, it is hard to make them robust individually
in low resolution video streams with low frame rates
where the environment and the tracked object/face
moves significantly. As mentioned before, merging
these algorithms using a Kalman filter was our
approach for solving these hardware shortcomings
which could work well with the algorithms that we
didn’t use in our implementation as well(like the
Artificial Neural Network approach) since the output
of each algorithm was considered a separate sensor
in the Kalman filter,

lll. Robot

As mentioned before, we are using the AD Drone
Quadrotor robot in our project. It has two camera
sensors (frontal and bottom camera) and an
ultrasound altimeter at the bottom to determine the
robot’s height from the ground. The sensor data that
we deal with comes from the front camera which
has 320x240 pixels resolution three color image
feed(stored as an multidimensional array

representing colors in each dimension) to find and
predict target’s moves and the altimeter output(an
integer value) to adjust the height of the robot to the
height of the person that is followed. We haven’t yet
found a good use for the bottom camera image since
it is unlikely that the robot will ever be right on top
of a person’s head and still be able to detect a face
or skin from that perspective, so it was disabled.

The data is transmitted by a wireless
connection between a computer and the Quadrotor
which is the limiting factor in the amount of data
that we get from the cameras (the camera resolution
is actually 640x480) which has serious effects on our
algorithms for face detection. Our algorithms require
a fair amount of lighting in the environment to
perform well since we are using vision as our main
source of information.

There's a built APl and platform in Linux
that was provided to us by the Robot Learning Lab,
through which we can connect to our robot and
collect data from its sensors in real time, run our
algorithms and send control commands to its
motors. To achieve our goal: following a person
automatically within a certain distance, we focus on
detecting and predicting the location of a person
face using the sensor data, and control the
Quadrotor using the PID controllers that we
implemented for yaw, pitch and height.

IV. Approach and Results

-Initial Approach

In order to allow the Quadrotor to track a person
autonomously, the robot needs to determine the
location of the human relative to its own location.
Since we only have one sensor that gives us useful
information about the environment (frontal camera),
localizing the humans face in the frontal image
stream corresponds to localizing relative position in
the environment. In our initial approach, we didn’t
realize the need for having different algorithms for
localizing a face in the image since we didn’t know



the limitations of possible algorithms and their
accuracies in low resolution image streams, nor did
we realize the importance of having a body
detection algorithm to realize a robust system.

Thus, we first implemented a system that had only
one vision algorithm for human detection: Haar-
Cascade classifier, a feature based algorithm that
trains a classifier using many images of a specific
object. In our case, we used the Haar-Cascade
classifier to determine the human faces in an image.
We considered that if the image resolution was good
enough for detecting a face within a range of 10
meters with correct classification rate greater than
70% percent, we wouldn’t need any other
algorithms. Since this algorithm finds the center of
the face in the image as well its size, we decided to
use the size of the face as an indicator of how far the
person is from the robot, giving us some depth
information. Therefore the output of this algorithm
had all we need to localize the human and set the
PID control for pitch, height and the yaw of the
robot.

Testing and Results

Our tests proved us wrong in many of our
assumptions at this point. First we never realized the
impact of the low resolution of the image that we
were getting on the feature based classification that
we were using. At around 5 meters away from the
robot, the human face became so small(in pixels)
that it was almost impossible to detect it using the
classifier with precision. It was possible to decrease
the window size of the training images to recognize
smaller faces. However this led to a huge increase in
wrong classifications which we could not deal with
easily and it made the system too unreliable. Also,
even if the right face was detected in the image,
there was the possibility of detecting other wrong
objects as faces at the same which we had no way of
determining and pruning out.

The impact of using a feature based
algorithm on the performance was quite large as
well, a cost that we weren’t willing to accept for such
low correctness (hit) rate. The frame rate that we
were able to process dropped from 13 fps to 2.3 fps

after applying the algorithm. Following is the
summary of the mean results after 10 trials where
the human was in the image within a range of 2
meters from the robot.

Duration(second) of each trial 20
Total # of frames without algorithm 267
Total # of frames using algorithm 46
Total # frames with some faces detected 34
Total # Frames detected the correct face 25

Total # frames with multiple faces detected 9

Rate of face detection 73.9%

Rate of correct face detection 54.3%

Applying the position and size information to the PID
controllers and testing the algorithm on the robot
also showed how unreliable this system is since
there were many cases of misclassifications and the
robot tried to track random objects in the
environment, though it sometimes detected the
correct face and tried to track it correctly for a short
time until the next misclassification.

-Second Approach

After testing our first algorithm, we realized the
shortcomings of the feature-based classification with
a low resolution camera. Especially, when the
tracked human was farther than 2 meters, the Haar
Cascade classifier’s performance was close to zero.
To improve our range of detection without a lot of
cost to the performance, we decided to implement a
skin color based detector that would help us make
an estimate of where the person was in the frame
when there wasn’t any detection (or multiple
detections) from the feature based classifier.




Implementation:
In order implement the skin detector we changed

the RGB color space into YcbCr color space which

separate the luma signal into Y channel and get rid of
this vairable. This was done so that we would be able
to detect the skin even under different illuminations.

Y=128+0.299%r+0.587*g+0.114*b;
Cb =128 -0.169%r - 0.332*g + 0.500*b;
Cr =128+ 0.500*r - 0.419*g - 0.081*b;

Most of the skin color pixels satisfy the filter:
Cb>85 & Cb<135 & Cr>135 & Cr<180

After classifying the image into skin and non-skin
pixels, we filtered out the noise in the image and

selected the greatest regions that had the shape of a
face in terms of roundness and proportions.

v X Face Detector

Testing and Results

The impact of the skin detector on the speed of the
overall algorithm (feature-based (Haar)
detection+skin color based detection) was quite
small (less than 0.1 fps) in addition to the initial
approach. However, we found that, this algorithm
was quite bad in terms of classification performance
by itself especially in complex backgrounds. Even
though its classification rate was 90%, the wrong
classification rate (falsely detected frame/ total
detect frame) was more than 70%. This was due to
the fact that the color in a complex background
would also include many objects with similar YcbCr
values. In our regular test setting of moderate
complexity (Upson Lab 317) it detected many yellow
or brown objects (door, table etc.) as skin and it was
quite difficult to determine these misclassifications
using shape features. Even though we tried to use

this classifier only as a means to help the Haar
Cascade feature classifier to choose between
detected faces in the same frame, this proved to be
of little value in terms of decision making as well in
>1m range since the amount of misclassification was
too large at that range. We have decided to give up
using a skin color based detector as a possible
classifier at this point.

-Final Approach

Our experiences with testing the Haar-cascade
feature based face detection algorithm on the robot
so far, made us realize the importance of choosing
the correct face among all the faces that are
detected in the image since this would increase the
correct detection rate from %50 to around %75-80
which would make a lot of difference for a flying
platform that needs a continuous information about
the location of the face in order to stabilize itself on
the right track towards the person. In our initial
approach of choosing the face randomly among all
the faces that are detected in the classifier, caused a
lot of trouble for the robot since a wrong choice
would lead it out from the right path, possibly
causing the person to move out of the field of view
of the camera, the only sensor that we have to
detect the person again.

Therefore, in order to increase the correct detection
rate from the feature based classifier, we decided to
choose the most likely face among all the faces that
are detected in a frame by looking at the previous
frame that there was valid detection and simply
choosing the closest face to the previously detected
face. This was done according to this distance
formula where size of the face was also considered

important:

D=sqrt((x_prev-x_current)z +(y_prev-
y_current)2+(sqrt(size_prev)—sqrt(size_current))z)

As it will be mentioned in the results, this improved
the correct classification rate significantly (almost
equal to the face detection rate which was greater



than 70%) which allowed us to use another method
to improve the robustness of our system.

Image Histogram Based Tracking- Continuous
Adaptive Mean Shift (Camshift)

With the improved Haar-Cascade feature classifier
giving a correct classification of >70%, we decided to
implement an algorithm that will fill in the blanks
between each valid face detection and allow us to
predict the future position of the face for a short
period of time (time enough to move with the
Quadrotor and try to keep the person in the image
frame). The algorithm that we used for this task was
the Camshift algorithm of OpenCV, where we took
advantage of the fact that each subsequent frame
was related to each other, due to their continuous
video nature. The main idea of this algorithm is using
color histograms of each frame to keep following a
region in the continuous stream of images. Given a
region of space in the image, the algorithm
compares the new images with the initial image to
determine the best match in the new image in terms
of color histograms and sets this new region to be
the region to be tracked in the next frame. Even
though in time (error exponentially increases), the
region to be tracked becomes completely wrong, it
was possible for us to refresh the region to be
tracked each time there is a valid face detection
from the Haar cascade feature classifier. This
resulted in a tremendous increase in the correct face
detection rate when there is a face to be detected in

the image.

Kalman filter

We implemented a modified version of Kalman filter
to combine the data we get from the feature-based
classifier and the Camshift algorithm to produce a
reliability indicator so that the Quadrotor doesn’t try
to follow random objects in the environment.
Following diagram shows the general
implementation of the Kalman filter that has two
different sensors with different reliabilities.
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In prediction stage, we selected the process noise
covariance Q=20 for each dimension which is quite
reasonable since usually the average changes in pixel
between frames in 5 pixels for each dimension.

In measurement update stage, we select the update
sensor depending on whether we get valid detection
from the Haar-cascade classifier. When we do get a
valid detection, we use the first measurement
update which has a very small error covariance(R=1)
since we trust the feature detection algorithm.

When we do not get valid face detection, we update
using the data from the Camshift algorithm which



has an exponentially increasing error covariance with
respect to time.

R=2%1.7")
This means that the Kalman gain of the filter will

decrease in time even though we do the
measurement update using the Camshift data.

detection (where the error covariance becomes very

small) and at the same time getting rid of the sharp

changes (errors) from the Camshift data when there

is no valid detection from the feature classifier.

250

On the graph to the
right, we can see at
the bottom of the
image in black, the
error covariance of
overall algorithm
which slowly
increases in time as
we do not make any
valid face detections
from the Haar-
cascade classifier
(therefore the robot
has only the
Camshift data).
Every time there is
valid face detection

from the % m
classifier, the

error covariance
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decreases sharply.

It is this error covariance that makes us choose
between trusting the output of the Kalman filter to
go towards a target and inaction. Therefore, only
when the error covariance is below a certain
threshold (we determined it to be 28 - the sum of
the errors in all directions) we set the PID control of
the Quadrotor to move towards a predicted position
of the target.

On the upper side of the graph, we can also see the
input and output positions for the x direction of the
Kalman filter. As we can see the output follows the
input almost perfectly when there is valid face

Final High Level Design:
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Figure 2: Kalman Filter Input (blue), Output (red) and Error Covariance (black)
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Body Detector:

After we finalized our face detection algorithms, we
decided to include the body detector that was
implemented by Yuandong for his MEng project that
involves the quadrotor which used the Haar-cascade
as a body classifier. This allowed us to increase the
range of 2.5 meters that we get from our face
detection algorithms to 6.5 meters which made a
quite an impact on the overall robustness of the
system. This was separated from the Kalman filter
and Camshift algorithms, and simply involved going
towards a body in the image with constant low
speed until it gets close enough for face detection.
At this point this algorithm was disabled. The error
rate of this feature classifier was smaller due to the
size of the body when the person was within 7
meters.

Results:

We tested our algorithms from our final design both
offline and on the robot with good results. The tests
were conducted with different levels of difficulty
with moderately hard background settings (lab with
many objects that could cause misclassifications).

In the first test set, the drone was able to
successfully move towards a person that was
standing still and keep a constant distance for 20
seconds with right height level 9 times out of 10.
This didn’t include the body detector and the drone
started from 3 meters range.

The second test set was conducted when the person
was moving with a slow speed 0.4m/s) in the
environment. The drone was able to keep a proper
distance and keep its direction towards the person 8
out of 10 cases. Initial start conditions were the
same as the first test set.

In the third test set, the person moved in a higher
speed (around 0.8 m/s), the drone successfully
followed the person 6 times out of 10, though it
sometimes came close to crashing to the person if he
made a sudden stop. Even though the person moved
in a fast manner he was always in the field of view of
the robot and within 3 meters of range.

The final correct face detection rate was 82% from a
range of 2.5 meters.

Conclusion:

Designing a robotic system to interact with humans
could be quite challenging since there are many
issues like navigation in the environment, sensor
shortcomings and hardware issues due to mobility
concerns. Confronted with this kind of a situation,
we developed several learning and vision algorithms
that complemented each other and improved the
overall performance of the task we wanted to
accomplish.
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Body detect

Previously, we use only the face detector to localize
the human. The face detector works well in the
distance between 25cm to 3m away from the
camera, but it will be hard for quadrotor to
recognize the face beyond this distance. To improve
the performance, | improve the previous algorithm
by integrating the body detector and upperbody
detector based on the Haar-Cascade classifier.

In the cases that drone fail to follow the person
(cannot detect the face) for a certain frames (10
frames threshold is set in the algorithm), he
qguadrotor will try to detect the upperbody of a
human. If fails, it will try run the fullbody detector.

In the offline test, the detection distance of
upperbody detector is between 75cm to 4m. And
the fullbody detector works in the distance between
2.8m to 6.5m. The affective distance are showed in
the following diagram:

0.25m am

Face detect range
0.75m 4.0m

uperdody detect range
28m 6.0m

full body detect range

To reduce the noise, a similar kalman filter is applied
to the data produced from two detectors as he face

detector. But unlike face detector, we don’t apply
camshift since it works much worse in both
situations since the color varies a lot in histogram of
that selected region which violates the precondition
of Camshift. Also the size information becomes less
important in this case since we know that the robot
is quite far away from human. The PID controller use
the center of the body as the target direction and
control the drone move to the human in a constant
speed(0.5 m/s). The new final high level design
diagram changes into the following:

Haar Cascade
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Haar Cascade
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On flight testing, the new algorithm can detect and
follow the human as far as 6.5m compare with 2m in
previous algorithm.



Implement the algorithm in iOS

The code we wrote previously is for linux platform.
To implement the game feature in i0OS, | start code
using the code base provided by Parrot S.A
developer kid. The code is written in object-C, it
provide the basic GUI, control interface and video
live feed from quadrotor implemented using Open-
GL ES.

iOS doesn’t support native OpenCV. The first step is
to compile static OpenCV library and integrate it into
the code. Several online resource explained how to
implement it (attached in the reference) and | also
met some minor issue caused by the different
version of OpenCV and iOS.

Then the OpenGL rendering of the video feed is
converted into OpenCV data, and intergrated with
the C code rewrote from the C++ implementation of
our own algorithm. The PID controller interacts with
the control data interface to operate the quadrotor
automatically.

The processor in iPhone is not as powerful as a
regular X86 processor. The frame rate drops from
2.3 fps to 0.8 fps when running Haar Cascade feature
classifier for face detection. And after integrating the
body detector, it drops to 0.6 fps. It’s far below the
necessary frame rate to control the quadrotor
normally.

Game feature in Linux

The algorithm we’ve wrote can be implementing as
an interactive virtual reality games. We are
controlling the quadrotor as a weapon and try to
search around to find the target person. At the same
time, the target can also move to avoid be locking
and attacking by the quadrotor. When the target is
not attacked, he/she will regain health slowly, which
makes the game more interesting. The harm done by
the quadrotor is determined by how good the target
is tracked. The closer the target to the center of the
screen, the greater the harm will be. Sample
screenshot is as follow:




A NOVEL GLOVE CONTROLLER FOR THE AR DRONE QUADROTOR

Mevlana Gemici- Justin Kuo

ECE 4760 Final Project

Project Description:

Our project is a novel hand held controller in which we use an accelerometer to wirelessly control the motion of a
Parrot AR Drone Quadrotor.

Rationale:

The main idea of our project was building a cool glove controller for a flying platform, a Quadrotor in this case,

which would give the user a different sense of power over the robot, unlike conventional controllers like the Xbox
controller. Even though this is an ambitious project(especially for a budget limitation of $75) that aims to make a

moderately good controller, it can open the way to further development for this type of controllers for flying

platforms used in the Robot Learning Lab in Cornell.

High Level Design and Logical

structure:

ADXL335
X Axis

ADXL335
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Resistor

Force Sensitv

Summary:

We utilized the ATMega32 microcontrollers in our project to determine the hand motions of a person by

L1l

ADC

Transmitter

Analog
Comparator

Receiver

processing the data from an ADXL335 accelerometer chip that detects motions in x-y-z directions. These sensor

data were sent in an encoded fashion through a radio frequency (RF) link and received using another

microcontroller of the same type. These wireless messages were processed by the receiver which was connected

to the computer that sent the processed command signals to the Quadrotor to be controlled.

For a full report on the implementation, hardware, code and related discussions:




http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/mcg74 jck226/mcg74 jck226/mcg74 jc
k226.html Videos will be uploaded on the course website soon as well.




