
Robust Object Tracking Using Kalman Filters with Dynamic
Covariance

Sheldon Xu and Anthony Chang
Cornell University

Abstract— This project uses multiple independent object
tracking algorithms as inputs to a single Kalman filter. A
function for estimating each algorithm’s error from related
features is trained using linear regression. This error is used
as the algorithm’s measurement variance. With a dynamic
measurement error covariance computed from these estimates,
we attempt to produce an overall object tracking filter that
combines each algorithm’s best-case behavior while diminishing
worst-case behavior. This filter is intended to be robust without
being programmed with any environment-specific rules.

I. INTRODUCTION

One very important perception task in robotics is tracking
objects using a camera. The goal of object tracking is to
find an object’s location in consecutive video frames. Object
tracking’s many obvious applications include perception and
control for autonomous surveillance systems, identifying and
neutralizing threats in missile defense, optimizing traffic
control systems, and improving human-computer interaction.

Many different algorithms have been proposed for object
tracking, including mean-shift tracking, optical flow, and
feature matching. Each algorithm has strengths in certain
environments and weaknesses in others. This project aims
to combine several such algorithms as inputs or “measure-
ments” to a single Kalman filter for robust object tracking.
The filter can favor the algorithm that is most applicable
to the current environment by decreasing its measurement
noise variance, and similarly ignore less suitable algorithms
by increasing their measurement variances.

This project focuses on training a robust object tracking
Kalman filter, then applying this filter to tracking varing
objects in arbitrary environments using a Parrot Quadrotor
robot. Training is done through regression of a function to
calculate the filter measurements’ error covariance. Training
and validation data contains a mix of video captures and
automatically generated data. No rules specific to any envi-
ronment are used during algorithm development or training.
The trained filter’s success is measured by its performance
in unfavorable environments, as well as its general ability to
follow objects when deployed on the quadrotor.

This report will first summarize the input object tracking
algorithms in Section II. Section III will cover how they are
combined into a Kalman filter, as well as how the Kalman
filter’s output is used to control the quadrotor. Section IV
will discuss the filter’s preliminary training and test results,
and Section V will conclude the report and results.

II. OBJECT TRACKING ALGORITHMS

This section discussion the object tracking algorithms that
we propose to use as measurements in our Kalman filter.
These algorithms have varying strengths and weaknesses;
we intend to train our Kalman filter to dynamically identify
when each algorithm is weak, and penalize it accordingly
with a higher measurement variance. A summary of each
algorithms’ weaknesses is presented in Table 1; these weak-
nesses are used to propose features for training in the next
section.

A. CamShift

The Continuously Adaptive Mean Shift Algorithm
(CamShift) is a lightweight object tracking algorithm based
on a one-dimensional hue histogram. Originally designed
for tracking faces or flesh tone, the algorithm computes the
probability that any pixel is part of the tracked object as
opposed to the background.

Given a color probability distribution, CamShift iteratively
applies the Mean Shift algorithm to find the centroid of
the probability image. The centroid is used as the center
of a window for recalculating another color probability
distribution, which will be used in the next frame. This
process repeats fairly quickly every frame. CamShift thus
continuously adapts its color histogram to each frame, hence
its name. [1]

CamShift is fairly good at tracking a single foreground
object even among multiple moving objects, as long as the
object is not too multicolored. However, CamShift’s results
are not as good if the foreground object is colored too
similarly to the background, if lighting conditions change,
or if the foreground object’s color changes rapidly.

B. SURF

SURF (Speeded Up Robust Features) is a feature detector
and descriptor. It is based on sums of approximated 2D Haar
wavelet responses and makes an efficient use of integral
images.

“Interest points” are selected at distinctive locations in
the image, such as corners, blobs, and T-junctions. The
neighbourhood of every interest point is represented by a
feature vector. The use of feature vectors allows SURF to
be scale and rotation invariant. SIFT matches these feature
vectors between different images (target versus scene). The
matching can be based on a distance between the vectors.
Fast approximate nearest neighbour search was used in this
implementation.



TABLE I
OBJECT TRACKING ALGORITHM SUMMARY

Algorithm dim bright lighting moving stationary dropped low similar similar
changes object object frames resolution background shapes background colours

CamShift bad good ok good good ok good good ok
SURF good good good N/A good good bad ok good

Optical Flow ok ok ok good bad ok bad good good

Given images of a target and a scene, SURF is very good
at finding the location of the image even under suboptimal
lighting or if there are similarly coloured objects in the
scene. One crucial drawback is the computation time required
to create interest points and match feature vectors, thereby
rendering it incapable of producing real-time results for
object tracking.

C. Optical Flow

Optical Flow tracking techniques allow the distinction
between multiple objects and the background in a scene.
This is computed based on the relative motion between an
observer and the scene.

Optical Flow can be implemented in many ways, but
commonly assume that neighbouring points in the scene will
have similar motions given consecutive frames. Under certain
circumstances, Optical Flow manages to track a moving
object very well. For example, under normal lighting, it can
locate a moving object.

III. KALMAN FILTERS

The Kalman filter is a framework for predicting a process’s
state, and using measurements to correct or ‘update’ these
predictions.

A. Time Update

Discrete-time Kalman filters begin each iteration by pre-
dicting the process’s state using a linear dynamics model.

1) State Prediction: For each time step k, a Kalman filter
first makes a prediction x̂−

k of the state at this time step:

x̂−
k = Axk−1 +Buk

where x̂k−1 is a vector representing process state at time k-1
and A is a process transition matrix. uk is a control vector at
time k, which accounts for the action that the robot takes in
response to state xk; B converts the control vector uk into
state space. [2]

In our model of moving objects on 2D camera images,
state is a 4-dimensional vector [x, y, dx, dy], where x and y
represent the coordinates of the object’s center, and dx and
dy represent its velocity. The transition matrix is thus simply

A =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 .

We chose to include x and y velocities in our model
because they are useful features. The objects that we intend

to track on camera, such as people and cars, have slowly
changing velocities; these velocities are easy to observe from
a video stream. On the other hand, more complex features
like acceleration are less useful, partly because they change
suddenly and are harder to observe.

Our robot is able to orient itself using yaw rotation to track
its target object. Its control is thus able to affect the object’s
x position: uk is just a scalar representing how much the
object is expected to move along the x axis in response to
control. Converting uk into state space is very simple:

B =
[
1 0 0 0

]
because the yaw control uk is only expected to shift the
state’s x-coordinate if the robot is approximately level.

2) Error Covariance Prediction: The Kalman filter con-
cludes the time update steps by projecting estimate error
covariance P−

k forward one time step:

P−
k = APk−1A

T +Q,

where Pk−1 is a matrix representing error covariance in
the state prediction at time k−, and Q is the process noise
covariance (or the uncertainty in our model of the process).
[2]

Intuitively, the lower the prediction error covariance P−
k ,

the more we trust the prediction of the state x̂−
k . Prediction

error covariance will be low if the process is precisely
modeled, so the entries of Q are fairly low. Unfortunately,
determining Q for any process model is often difficult – Q
depends on hard-to-predict variables such as how often the
target object changes velocity. We use the Autocovariance
Least-Squares technique, whose implementation is freely
available in MATLAB/Octave, to learn Q for our process
model from training data. [3]

B. Measurement Update

After predicting the state x̂−
k (and its error covariance)

at time k using the time update steps, the Kalman filter
next uses measurements to “correct” its prediction during
the measurement update steps.

1) Kalman Gain: First, the Kalman filter computes a
Kalman gain Kk, which is later used to correct the state
estimate x̂−

k :

Kk = P−
k HT (HP−

k HT +Rk)
−1

where H is a matrix converting state space into measure-
ment space (discussed below), and R is measurement noise
covariance. [2] Like Q, determining Rk for a set of measure-
ments is often difficult; many Kalman filter implementations



statically analyze training data to determine a fixed R for all
future time updates. We instead allow R to be dynamically
calculated from the measurement algorithms’ state. This
procedure is detailed at the end of this section.

2) State Update: Using Kalman gain Kk and measure-
ments zk from time step k, we can update the state estimate:

x̂k = x̂−
k +Kk(zk −Hx̂k

−).

Conventionally, the measurements zk are often derived
from sensors. [2] In our approach, measurements zk are
instead the output of various tracking algorithms given the
same input: one frame of a streaming video, and the most
likely x and y coordinates of the target object in this frame
(taken the first two dimensions of x̂k

−).
zk thus contains two dimensions for every tracking algo-

rithm, and has the form [x0, y0, x1, y1, ..., xn−1, yn−1] for n
different tracking algorithms. As a result, H has the form

H =



1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0
... ... ... ...
1 0 0 0
0 1 0 0


as each measurement’s x and y coordinates ideally equal
the state’s x and y coordinates, without any dependence on
velocity.

3) Error Covariance Update: The final step of the
Kalman filter’s iteration is to update the error covariance
P−
k into Pk:

Pk = (I −KkH)P−
k . [2]

The updated error covariance will be significantly de-
creased if the measurements are accurate (some entries in
Rk are low), or only slightly decreased if the measurements
are noise (all of Rk is high).

C. Control

1) Yaw: Our approach to control is fairly straightforward:
the x coordinate of each a posteriori state prediction is used
as an input to a proportional controller. The controller simply
sets the robot’s yaw based on x−xcenter, where xcenter is the
x-coordinate of the image’s center. Thus, the robot attempts
to keep the object in the center of its vision.

2) Pitch: We originally intended to control pitch motion
in addition to yaw motion, so the robot could follow objects
in addition to tracking them. However, while this worked
fairly well on certain classes of objects such as faces and
hands, this proved difficult to generalize to a robust object
tracker. Two possible approaches are summarized below.

a. Proportional size: Some tracking algorithms like
CamShift output the target object’s estimated size in addition
to its estimated location. One approach to following is to
use a P controller for pitch on these outputs, in an attempt
to maintain a fixed object size. If the object appears to be
shrinking fast or occupies too little of each frame, move

closer to it. If the object appears to be growing fast or
occupies too much of each from, move away.

Depending on the P controller’s tuning, this approach
works well on certain sizes of objects and poorly on others.
For example, it can follow rolling chairs well at the expense
of following the much smaller hands poorly.

b. Distance dimension: By adding object distance as
another dimension of the Kalman filter’s state, we may be
able to get a better estimate of object size. This way, the rules
for computing the object’s distance (or changes in distance)
from measurements can be learned through regression, like
the rest of R. From here, using a P controller to maintain a
reasonable distance is easy.

Unfortunately, computing distance using a monocular
camera is not trivial. One major problem is inputting a
starting distance to x̂0; this is difficult to do robustly.

3) Altitude: We considered allowing the robot to follow
its target object vertically by adjusting its altitude. Much like
yaw, altitude could be maintained by a simple P controller.

While this was fairly easy to implement, we decided
against including vertical following in our final build, for
fear of crashing the robot into the floor/ceiling, or flying it
too high to safely land. Object tracking still works just as
well without vertical following, as most objects don’t move
too much along the y-axis.

D. Tracking Algorithms as Kalman Filter Measurements

Kalman filters are easily able to take tracking algorithm
outputs as measurements. However, the difficulty in com-
bining arbitrary tracking algorithms as measurements comes
from computing the Kalman gain: Rk, the measurement
covariance matrix, is difficult to determine.

Our approach to this problem computes an error or noise
estimate for each tracking algorithm. This computation is
trained based on regression of image features that represent
each algorithm’s weaknesses. The features we propose are
detailed below, and the actual training from these features is
detailed in the next section. All features are computed from
up to 2 consecutive video frames.

1) CamShift: Camshift tracking tends to fail when the
target object is colored too similarly to the background, or
when the target object’s color histogram rapidly changes (for
example, when a target person walks into a shadow).

These two failure conditions are possibly captured by two
features: the 2-norm in the target’s histogram change since
the last frame, and the 2-norm of the difference between the
target’s histogram and the image background’s histogram.
Both features are easily calculated using the OpenCV func-
tions calcHist, calcBackProject, and compareHist.

Another of CamShift’s weaknesses is in tracking objects
behind temporary obsctructions. We would like to introduce a
feature to express this weakness, but it is somewhat infeasible
to extract such a feature from only two frames.

2) SURF: Commonly, SURF’s performance is mostly
affected by the number of descriptors, which decreases with
very poor lighting, low resolution, or a very plain object. A
low number of descriptors in either target or scene images



will degrade the performance. For example, a plain blue t-
shirt in poor lighting and low resolution (34 x 53 pixels) gives
only 4 descriptors. Even with 658 descriptors extracted from
the scene (320 x 240 pixels), only 2 matches are made. Thus,
the variance of SURF may be estimated from the feature:

1− (matches/min(dO, dB)) ∗max(T −min(dO, dB), C)

where dO is the number of descriptors on the object, and
dB is the number of descriptors on the background/scene.
Our values of constants include thresholds T = 50 (minimum
number of descriptors, related to the quality of the image),
and C = 20 (maximum variance if the image meets quality
requirements).

3) Optical Flow: Optical flow assumes brightness consis-
tency, which is difficult to guarantee for the application of
object tracking. It is also prone to image noise under very
bright or very dark lighting, and will not return any useful
data if the object is not moving. Optical Flow’s variance may
be estimated from the following features: (change in image
luminosity)2, (average image luminosity - 128)2, dx, and dy.

Furthermore, Optical Flow will attempt locate the object in
the scene that moves with the greatest velocity. Thus, if there
are multiple objects moving at different velocities and the
target object is not moving the fastest, it will be difficult to
locate the target object. Unfortunately, this feature is difficult
to capture without identifying multiple objects.

IV. DATA AND RESULTS

A. Training

1) Data: Labeled training images allow us to perform
linear regression, correlating the features of image pairs
(described in section III) with tracking algorithm error.

Our training data consists of hundreds of image pairs
(from sequential video frames), where the target object’s
location is known and labeled in both frames. Validation data
similarly contains about a hundred image pairs. These images
are meant to cover a wide range of objects and environments,
as the training is intended to produce a robust Kalman filter
for any object or environment without ‘knowing’ any special
information about either one.

On a pair of training images (imgi, imgi+1), we first
initialize all tracking algorithms using the target object’s
known location in imgi. Then we compute each algorithm’s
predictions of the object’s location in frame imgi+1, and
record each algorithm’s error in Euclidean distance. The
error-predicting features for each algorithm detailed at the
end of section III are also recorded.

After error has been collected for each training pair, we
use linear regression on the error-predicting features to find
the least-squares fit to tracking error. This linear regression
produces a rule for computing measurement error covariance
Rk from images imgk and imgk−1. For simplicity, we
assume that tracking algorithm errors are independent, so
we only need to perform regression on each algorithm’s own
variance rather than an entire covariance matrix.

Since manually labelling training image pairs is expensive
and prone to errors, and regression on so many dimensions

Fig. 1. Automatically generated and labeled training data. The previous
frame is on the left.

requires a large set of data, we have supplemented our
training data with some automatically generated training
pairs. Fig. 1 shows an example training pair, containing a
target object (red circle) on a black background with colored
noise. A label (represented as a blue ellipse) is generated for
both images. The label on the first image is used to initialize
the tracking algorithms. The label on the second image is
compared to the tracking algorithms’ output (example shown
in white). Our training set includes about eight thousand such
automatically generated pairs, and our validation set includes
about two thousand.

2) Training Metrics: Training produces a linear function
for computing a measurement error covariance matrix; we
apply this rule in a Kalman filter over the training and
validation image streams to calculate the resulting Kalman
filter’s tracking accuracy. Training and validation accuracy is
calculated as the rate at which the Kalman filter’s predicted
location is within 48 pixels (Euclidean distance) of the real
location (provided by label).

Accuracy on both training and validation data has been
fairly consistent at 97.45%.

B. Testing

Testing had two components: Kalman filter robustness in
certain environments, and robot deployment. All testing is
compared to the CamShift algorithm alone as a baseline.

1) Kalman Filter Robustness: To test the Kalman filter’s
robustness, we ran the Kalman filter on video streams from
three hand-picked ‘difficult’ environments. Our error metric
for this test is more high-level and labor-intensive than the
one used in training: each video is a trial, and each trial is
successful only if a human judge decides that the Kalman
filter has behaved correctly. The data sets are listed below,
and a summary of these test results is presented in Table 2.

A. Lighting Changes: These videos start by tracking an ob-
ject in one lighting environment. The object then moves into
a differently-lit environment, and then back to the original
environment. For example, the object may be under bright
ambient lighting in the first frame, and then move against a
harsh backlight before finally returning to its starting point.
Success is achieved when the Kalman filter is obviously still
tracking the object in the last frame.

Our Kalman filter performed poorly on these test sets,
perhaps because of its heavy reliance on CamShift. It only



Fig. 2. Camshift on a distracting background. It was initialized to track
the blue shirt, but eventually tracked the blue chair instead. The Kalman
filter dynamically penalizes CamShift with a higher variance.

Fig. 3. SURF on the same distracting background as Fig. 2. SURF
successfully follows two points on the shirt from one frame (top) to the
next (bottom); the red lines link these points across the frames.

successfully tracked the object 1 in 5 times. A baseline
CamShift tracker similarly succeeded 1 in 5 times.

B. Distracting Background: This set has videos in which
the target object is very similarly colored to the background.
For example, the target may be a dark blue shirt, while
the background contains a similarly dark blue armchair. The
filter is considered successful if it still tracks the object as
the object moves through the background and back.

The trained Kalman filter was fairly good on these test
sets, succeeding 11 of 13 times. The baseline CamShift
alone had worse accuracy at 8 successes out of 13. SURF
is particularly good at this test set, seeing that it is able to
distinguish features from similarly colored objects (see Figs.
2 and 3).

C. Obscured Object: These videos involved the target
object moving behind an obsctruction and emerging from
the other side, then returning to its starting location. Trials
are successful if the filter clearly tracks the object as it moves
through the obstruction, then back to its starting point.

Our Kalman filter had a success rate of 8 in 14 on this
data set. CamShift performed better at this task, scoring 10
of 14.

C. Robot Deployment

The robot deployment tests were fairly simple: each trial
consisted of deploying the quadrotor running the Kalman
filter and controller, and letting it physically track an object.

TABLE II
KALMAN FILTER ROBUSTNESS TEST RESULTS

Algorithm Lighting Background Obscured
Kalman Filter 20% 84.62% 57.14%

Baseline
(CamShift) 20% 61.54% 71.43%

Trials were successful if the robot clearly tracked the target
object for at least 10 seconds.

Our tests consisted of letting the robot track shirts, jeans,
hands, and faces. All trials were performed in basic, dim
environments with distracting backgrounds. Of 15 recorded
trials, 12 were successful; following usually lasted 30 or
more seconds. The baseline CamShift alone had the same
success rate of 12 in 15, though its tracking tended to last
longer during successful trials.

Oddly, several different quadrotors used for these tests
drifted even when control was disabled; this may have
negatively affected the tests’ accuracy. We hope to perform
some trials on a more stable platform in the future.

V. CONCLUSIONS

We presented an approach for training a function for
dynamically adjusting Kalman filter measurement error co-
variance, in attempt to tune a Kalman filter to favor better-
suited tracking algorithms, and penalize ill-suited ones, dur-
ing runtime. We implemented this approach using training
and validation data drawn from real videos and automati-
cally generated images, then tested its robustness in various
environments.

Our experiment had mixed results. Though the Kalman
Filter increased tracking accuracy in one type of envi-
ronment, it was matched or outperformed by the baseline
CamShift algorithm in most cases. Thus, we were only partly
successful in increasing robustness over CamShift.

Future attempts to this approach may be able to improve
upon our results by choosing more meaningful features for
the regression (such as features that span more than just
two frames), or by collecting a better set of training and
validation data. Additionally, linear regression may not have
been the best choice; perhaps a simpler logistic regression
outputting a binary ‘strong’ or ‘weak’ rating may produce
better results.

VI. ACKNOWLEDGEMENTS

We’d like to thank Cooper Bills for pointing us in the right
direction and providing us with resources for this project.

REFERENCES

[1] J. G. Allen et al., Object Tracking Using CamShift Algorithm and
Multiple Quantized Feature Spaces, Conferences in Research and
Practice in Information Technology, vol. 36, 2004, pp 1-4.

[2] G. Welch and G. Bishop. An Introduction to the Kalman Filter,
Proceedings of SIGGRAPH 2001, pp 19-24.

[3] M. R. Rajamani. Data-based Techniques to Improve State Estimation
in Model Predictive Control. University of Wisconson Press, 2007, pp
ii-iii.


