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Abstract—We attempt to have a quadrotor autonomously 

avoid people while moving through an indoor environment. Our 

algorithm for detecting people uses a Haar classifier to detect a 

person’s upper body in the image feed from the front camera of 

the quadrotor. We then localize the person in a 5 x 5 grid based 

on the location and size of his detected feature. We use this grid 

to form a Markov decision process (MDP) problem and use 

reinforcement learning to determine the optimal control policy 

for the quadrotor so as to avoid colliding with the person. 

I. INTRODUCTION 

Robots are increasingly required to navigate through 

crowded and dynamic environments in order to perform their 

tasks. The ability to detect and avoid moving people is thus 

crucial to the successful completion of these tasks. The task of 

avoiding people is not entirely simple for a robot, however, as 

it requires the robot to detect a person using its sensors, such 

as an onboard camera, and to execute planning and control 

algorithms to successfully avoid the moving person.  

In this project, we attempt to navigate a quadrotor through 

a series of indoor environments that are largely free of 

obstacles while avoiding moving people. The quadrotor 

should maintain a safe distance of at least 1 m from an 

oncoming person, adjusting its flight path as required. We 

attempt to do so by using the Haar classifier to detect a 

person, and running a reinforcement learning algorithm to 

determine the optimal path to be taken by the quadrotor. 

We test our algorithms by navigating the quadrotor 

through a number of indoor environments. The results show 

that the quadrotor performs well in open indoor 

environments, and fairly well in enclosed areas. 

II. RELATED WORK 

In the area of obstacle and person detection, previous 

works include papers on navigating aerial robots in an indoor 

environment and avoiding obstacles using vision-based 

sensors. Bills, Prakash and Leung [1] developed a 

vision-based algorithm, using a support vector machine 

(SVM) to detect obstacles in the image stream from the front 

camera of an indoor helicopter. Control algorithms are then 

used to avoid the detected obstacles in an indoor 

environment. Work related to object or face detection using 

 
 

Haar-like features include papers by Lienhart and Maydt [2], 

and Viola and Jones [3].  

In the area of avoidance and control, Michels, Saxena and 

Ng [4] modeled a remote-controlled (RC) car control problem 

as a Markov decision process, and used reinforcement 

learning techniques to develop a control policy that would 

steer the RC car to avoid obstacles. Similarly, Bou-Ammar, 

Voos, and Ertel [5] used reinforcement learning to control 

and stabilize a quadrotor. 

We develop a vision-based algorithm based on these 

related works, using a Haar classifier to detect people and 

reinforcement learning to determine the optimal control 

policy for the quadrotor. 

III. HARDWARE PLATFORM 

The robot used in the project is the Parrot AR.Drone, a 

WiFi-controlled quadrotor. A laptop computer runs the 

various vision and learning algorithms, and provides control 

instructions to the quadrotor through a wireless connection. 

The quadrotor has a front camera and a camera aimed 

downwards. The front camera provides an image stream with 

a resolution of 320 x 240 pixels, which is used as the input for 

the people detection algorithm. The quadrotor also has 

downward facing sonar sensors which measure the altitude of 

the quadrotor. 

IV. PERSON DETECTION AND LOCALIZATION 

We used a Haar classifier implemented in the OpenCV 

library to detect people. We first evaluated several different 

Haar cascade files in the OpenCV library to find the optimal 

cascade for our vision algorithm. Cascades that detected a 

person’s face, such as “haarcascade_frontalface_alt.xml” and 

“haarcascade_frontalface_default.xml” had a high accuracy 

of detection, giving a low rate of false positives (falsely 

classifying objects that are not faces as being faces), but were 

unsuitable for the quadrotor due to their short detection range. 

These cascades were often only able to detect the person’s 

face when the person was within 1 m of the quadrotor, and 

often at these distances the person’s face would be too high to 

be captured by the quadrotor’s front camera, depending on 

the altitude that the quadrotor was flying at.  

We tried to solve this problem by running the 

“haarcascade_lowerbody.xml” simultaneously with the face 
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detector so that the person’s lower body would be detected if 

the quadrotor was flying at too low an altitude to see the face. 

However, the “haarcascade_lowerbody.xml” cascade worked 

poorly and often failed to detect the person, while registering 

chairs in the room as false positives. We eventually chose the 

“haarcascade_upperbody.xml” cascade as it had a longer 

detection range of about 3 m. However, this cascade also gave 

a higher rate of false positives. For example, it would 

sometimes classify the doors in the Upson hallway as 

positives. We ran tests to determine the localization accuracy 

of this upper-body classifier and the results are shown in a 

subsequent section.  

 The upper-body Haar classifier returns a CvRect object for 

each detected person, which describes a rectangle enclosing 

the detected feature, as shown in figure 1. We localized the 

person in a 5 x 5 grid, as shown in figure 2, which represents a 

top-down view of the environment ahead of the quadrotor. 

The width of each square in the grid represents approximately 

a person’s step size. A person’s x-coordinate represents his 

horizontal position relative to the quadrotor, such as whether 

the person is to the left or the right of the quadrotor, while the 

y-coordinate represents the person’s distance from the 

quadrotor. The quadrotor is always located at the (2, 0) 

position in the grid, with the grid moving with the quadrotor. 

Therefore, if the quadrotor moves one cell to the left, the 

entire grid moves left, causing people in the grid to be shifted 

one cell to the right to reflect their positions relative to the 

quadrotor, while the quadrotor remains at square (2, 0). 

         

 
Fig. 1.  An image from the quadrotor’s camera with two rectangles 

corresponding to the features of the two people detected by the Haar 

classifier. 
 

            

 
Fig. 2.  An illustration of the 5 x 5 grid used to localize people relative to the 

quadrotor. The grid represents a top-down view of the environment ahead of 
the quadrotor. The quadrotor is fixed at position (2, 0) in the grid. 

 

We localized a detected person in the grid based on the size 

of the CvRect object corresponding to the person’s features. 

We note that a person further away from the quadrotor would 

be described by a smaller rectangle, and a person further from 

the center of the quadrotor would be described by a rectangle 

that is further from the center of the camera image. Therefore 

we normalized the x-coordinate of the center of the CvRect 

rectangle to get the x-coordinate of the person in the grid. A 

person with an x-coordinate within pixel 0 to 64 in the 

quadrotor’s image would be placed in grid 0, while a person 

with x-coordinate within pixel 65 to 128 would be placed in 

grid 1, and so on. Similarly, the y-coordinate of the person in 

the grid, which represents the distance of the person from the 

quadrotor, was determined based on the size of the detected 

feature. A person described by a rectangle of width smaller 

than 60 pixels is placed in grid 3, while a person described by 

a rectangle of width smaller than 90 pixels is placed in grid 2, 

and so on. These parameters were chosen based on a set of 

test images.  

We tried other person detection methods as well, but 

finally settled on the Haar classifier. Prior to the midterm 

presentation, we implemented person detection using 

Histograms of Oriented Gradients (HOG) descriptors 

together with a Support Vector Machine (SVM). We divided 

the 320 x 240 pixel image from the quadrotor’s camera into a 

5 x 3 grid of 64 x 64 pixel cells, similar to the grid used by 

Bills, Prakash and Leung [1]. HOG descriptors were used to 

extract the features in each cell and a SVM classifier 

determined if the cells contained a person’s face and upper 

torso. The SVM was trained on a total of 150 positive 

(contains person) and 200 negative (does not contain person) 

64 x 64 pixel images that we took using the quadrotor’s front 



  

camera in the Upson 317 room. Testing the SVM classifier on 

images of group members standing in the room gave an 84% 

accuracy of classifying a positive image (identifying a person 

when the person is in the picture). 

Based on the positions of people localized in the 5x5 grid 

shown above in figure 2, a reinforcement learning algorithm 

is then used to determine the optimal control policy. 

V. AVOIDANCE USING REINFORCEMENT LEARNING 

The reinforcement learning algorithm takes as input an 

array representation of the 5 x 5 grid of detected persons, such 

as the grid shown in figure 2. A grid of rewards is then created 

as shown in figure 3. The end states with y-coordinate 4, that 

is, the states furthest from the quadrotor are each given a 

positive reward of 10, since we want the quadrotor to move 

forward. Grid squares containing detected persons are given 

rewards of -100, since we want the quadrotor to avoid these 

squares. All other states have a reward of 0, and we do not 

localize a person in an end state. 

Value iteration is then performed on the given grid of 

rewards to determine an optimal control policy. As seen in 

figure 3, the optimal action for the quadrotor, assumed to be 

in grid square (2, 0), is to move forward. The value iteration 

algorithm was determined to be able to converge in 60 

iterations and 100 ms for all test runs with up to 3 people in 

the grid. Therefore, we decided to run this reinforcement 

algorithm real-time, instead of simulating the possible 

scenarios and storing the results beforehand. 

The parameters of the Markov decision process (MDP) and 

reinforcement learning problem were calibrated based on our 

desired actions, forward, left or right, given a particular 

scenario. For instance, we determined that if a person were 

detected in grid square (2, 2), the quadrotor should avoid it by 

moving to the left or right. However, if a person is detected is 

square (1, 2) and is therefore not directly in the path of the 

quadrotor, we determined that the quadrotor should continue 

moving forward, and only avoid the person when he is in grid 

square (1, 1). Based on these desired actions and several test 

runs, we set the parameters of the MDP as follows:  

 

𝐴 = {forward, left, right} 

𝑅 𝑠 =  
        10     if 𝑠 is an end state
−100     if 𝑠 has a person

0     otherwise   

  

𝑃right = 0.85, 𝑃wrong = 0.075 

𝛾 = 0.8 

  

The probability 𝑃right  represents the probability of the 

quadrotor moving into the correct state given an action, while 

𝑃wrong  represents the probability that the quadrotor moves 

into the wrong state (on either side of its desired action) given 

an action. For instance, if the quadrotor moves forward in grid 

square (2, 0), with probability 𝑃right , it will move forward, 

and with probability 𝑃wrong , it will instead move to the left or 

right. 

 

 
Fig. 3.  An illustration of the 5 x 5 grid of rewards based on the input grid of 
detected persons from figure 2. The end states with y-coordinate 4 are given a 

reward of 10, while the grid squares with detected people are given a reward 

of -100. All other states have reward 0. The optimal action in grid (2,0) is to 
move forward. 

 

 Based on the optimal action given by the reinforcement 

learning algorithm, that is, to move forward, left or right, the 

control parameters of the quadrotor are then determined. We 

selected a pitch value of -2000 for a forward action (all other 

values 0), a roll value of -1000 for a left action, and a roll 

value of 1000 for a right action. These control parameters 

were determined to be optimal based on a number of test runs, 

as they allowed the quadrotor to move sufficiently fast 

forward while allowing sufficient time to detect and avoid an 

oncoming person. 

VI. EXPERIMENTS 

We performed a series of tests to determine both the 

accuracy of the person detection and localization algorithm, 

and the performance of the reinforcement learning algorithm.  

To determine the accuracy of the person detection and 

localization algorithm, we first took 20 images of a person in 

each possible grid square from (0, 1) to (3, 4) using the front 

camera of the quadrotor, for a total of 300 images. We labeled 

each of these images, ran the detection and localization 

algorithm on them, and determined if the algorithm both 

detected the person and placed him in the correct grid square. 

The results are shown in the following table.  

 



  

 

 
0 1 2 3 4 

1 95% 95% 100% 95% 90% 

2 100% 95%  100% 90% 85% 

3 90% 90% 90% 85% 85% 

Overall accuracy = 277/300 = 92.33% 
Fig. 4.  A table of the accuracy of the detection and localization algorithm for 

the various grid squares. 

 

We note that the detection and localization algorithm is 

quite accurate, giving an overall accuracy of 92.33%. In 

particular, the grid squares nearer to the quadrotor, such as 

those immediately in front of the quadrotor (in squares (1, 1), 

(2, 1), (2, 2) and (3, 1)) have at least 95% accuracy. This 

allows the quadrotor to accurately map out the people ahead 

of it, and to determine the optimal action in these scenarios. 

We also note that the grid squares further from the quadrotor, 

such as those with y-coordinate 3, have accuracy at most 

90%, as the Haar classifier is occasionally unable to detect the 

person at a far range. However, this is not as crucial, as the 

quadrotor should be able to detect the person as it gets nearer 

to the person.   

Next, we tested the person detection and avoidance 

algorithm in three different environments, namely the narrow 

corridor outside Upson 360, the wide corridor outside Upson 

317 and the room environment in Upson 317, as shown in 

figure 5.  

 

     
 

 
Fig. 5.  Images of the three environments where we tested the quadrotor, 
taken using the front camera of the quadrotor. On the top left is Upson 317, 

on the top right is the narrow corridor and on the bottom is the wide corridor. 

 

We ran a set of 10 test runs of the quadrotor with a moving 

person in each environment. Each test run involved the 

person standing 3 m from the quadrotor initially, with the 

quadrotor placed in the center of the environment. The person 

would then walk straight towards the quadrotor at a normal 

walking pace, and the quadrotor is determined to have 

successfully avoided the person if it passes the person with a 

gap of at least 20 cm between both the wall and the person, 

and moves on for a distance of at least 1 m. Therefore the 

quadrotor is considered to have failed the run if it touches or 

goes too close to the wall or the person at any point. Based on 

these criteria, we obtained the following results.  

 

Environment No. of test runs Success rate 

Narrow corridor 10 60% 

Wide corridor 10 80% 

Room 10 90% 

Fig. 6.  Table of results of the test runs and the success rate in the different 
environments. 

 

 We see that the quadrotor performs well in an open 

environment like the room, and fairly well in a more enclosed 

area such as the corridor. In most instances, the quadrotor 

failed because it moved to close to the wall. This is 

unfortunately not accounted for in our algorithm, and future 

work could involve both moving people and stationary 

obstacles. 

 We ran a few tests of avoiding two moving people in the 

wide corridor and the quadrotor did fairly well, being able to 

avoid the two people in most of these tests. Some of these test 

runs can be seen in the attached video. 

VII. CONCLUSION 

We were able to successfully implement people detection 

and avoidance using the quadrotor in the Upson 317 room and 

corridor environments. Our approach of using a Haar 

classifier to detect and localize people, and reinforcement 

learning to determine the optimal control policy performed 

fairly well in these indoor environments. 

Future work could involve incorporating obstacle detection 

perhaps by using the SVM classifier described by Bills, 

Prakash and Leung [1], and localization of the quadrotor 

within the learning grid based on the image from the front 

camera or with the use of additional sonar sensors. Additional 

actions could be also considered in the MDP, such as 

remaining still when the path ahead is blocked, or turning to 

observe other parts of the environment. Some form of 

memory, perhaps with the use of hidden Markov models 

(HMMs), could also be incorporated so that the quadrotor can 

keep track of the recent movements of the person, or the 

relative motion of two oncoming people. 
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