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Abstract

The task of estimating distance for a robot with a single
camera is a difficult one. It has been addressed several
times[1][2]. Our goal is to train a robot to avoid a yellow
ball in an open, unknown environment. We use the known
diameter of the ball to compute its distance to the camera,
then predict its next positions with a Kalman filter, and we
provide two methods to avoid the ball. Finally, we show
the results of several experiments aiming at quantifying
the accuracy of our methods and we give several steps
forward that could be taken next.

1 Trajectory Estimation

1.1 Camera Model

In order to track a ball in the 3-D space with only one
camera, there are existing models in computer vision that
allows us to estimate its coordinates. Given the fact that
the frame rate of the camera is not high enough and the
processing power of the robot is also relatively low, we pick
the simplest one called "pin hole model".
The pin hole model enforces that rays of light travel in
straight lines from the object, through the pin hole, to
the sensor plane, under the assumption that the lens is
ideal. According to the model, any object at a distance
y from the lens with a distance z from the principle axis,
the corresponding image on the sensor with the height z′
is governed by the equation

z′

f
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z

y
(1)

where f is the focal length of the camera.
From which we can deduce the set of equation[
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(2)

where x′ and z′ are the coordinate of the image on the
sensor in pixels, which can be measured using computer
vision algorithms such as Hough circle. Thus the actual
x, z coordinate of the ball in 3-D space (in centimeters)
can be easily computed if we can somehow obtain the dis-
tance between the ball and the camera in the y direction
(in centimeters).

Other than the position on the image, the diameter of

the ball on each frame can also be easily measured in pix-
els. Since we know the actual diameter of the ball, which
is 6.7 cm, by equation 1 we can estimate the y coordinate
of the ball in 3-D space using the equation

y =
d · f
d′

(3)

where d and d′ are the diameter of the ball in 3-D space
and on the image respectively.

1.2 Setting Up the Parameters

1.2.1 Exploiting the model

Before we can start tracking the ball in a frame captured
by the camera in real time or extracted from a video, we
first have to set up several parameters, which include the
focal length of the camera, and the color thresholds for the
ball.

Focal Length f
As mentioned in the previous section, the "pin hole
camera model" requires the focal length of the cam-
era in order to estimate the distance to any object.
However, most of the cameras that we are going to
use do not have the focal length given. Moreover,
according to equation (3) the focal length has to be
expressed in pixels instead of centimeters to match
the units. Therefore we have to calibrate the camera
at the very beginning. Fortunately, the calibration
process is quick and simple for the "pin hole camera
model". Since we know the real diameter of the ball,
and the diameter in the image. By placing the ball at
some fixed distance, say 15 cm from the camera and
plugging the parameters into equation (3), we can
compute the focal length of the that specific camera
in pixels for position estimation.

Color Thresholds
Since the Hough circle algorithm only works on bi-
nary images, the captured frame must be thresholded
before the algorithm can handle it. The process that
we are going to use will transform the frame into a
grayscale frame which represents the probability of
each pixel being part of a ball. Thus we need a thresh-
old to filter the probability frame into a binary image.
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1.2.2 Correction to the model

The pinhole camera model is built on the ideal lens model,
which is ideal and does not exist in this world. One of the
issues that the ideal lens model ignores is the curvature of
the lens. In OpenCV there is an extended pinhole camera
model that takes care the problem. The position in 3D is
related to the point in the 2D image in the following way:[

x′

z′

]
=

1

y

[
x
z

]
(4)[
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]
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+

[
2p1

2p2

]
x′z′ +

[
p2(r2 + 2x′2)
p1(r2 + 2z′2)

]
(6)

u = fx · x′′ + cx (7)
v = fy · z′′ + cy (8)

where r2 = x′2 + z′2, (u, v) is a point on the image. This
extended model handles the curvature of the lens but there
is no easy inversion that maps from the image plane to the
3D location. Therefore in this project, we uses the original
model with little modification.

As the focal length of the lens acts as a scaling factor for
all three coordinates, we can adjust it based on the position
and size of the ball in the image in order to correct the
location estimation. To find a proper mapping between
radius and the focal length, the simplest way is to fit a
curve to the data. Based on the distance of the ball from
the robot, we can divide it into three cases: close, medium
and far away. To simplify the problem, we will only fit
curves to the focal length to the medium range data as it
is the most proper range for the robot to react.

1.2.3 Fitting Result

From the data collected and the testing results on color
detection, the most reasonable range to work on turns out
to be from 1.5 m to 2.5m. The focal length corresponds
to the y-direction is given by

fy = 375− 115

256
(r − 32)2

and the focal length corresponds to the x/z direction is
given by

f = 680
(

1− e−|x|
0.5387/5.5964

)
where r is the radius given by the Hough circle algorithm
and x is the position of the ball measured from the center
of the frame. It is similar for the z direction. Figure 1
shows the curve fitting to part of the data.

1.3 Using histograms for detection
As we are using OpenCV, we have access to different
color spaces: HSV, YCrCb, or Lab. At first we assumed
OpenCV opened the files in RGB, but in fact it opens
them in BGR, which caused a lot of problems; we found

Figure 1: Fitted focal length in direction direction

out about this very late. To retrieve a ball on an image we
assume that it has a particular histogram. We calculate
the average histogram for a ball and then use it for a back
projection. The back projection is basically assigning to
each pixel of the source image a probability of belonging
to a ball, based on the histogram. We then get a gray
scale image that we threshold to get a binary image and
then we apply a median filter and a blur filter.

By trying some color spaces and manipulating the num-
ber of bins for the histogram, we found out that YCrCb
was a good color space for these bins values: 4 for Y and
20 for Cr and Cb. We have then a greater precision on
the chrominance values than on the luminance values, as
we do not want to rely on luminance: we want to compare
the color information mostly.

We can then apply an algorithm to find the Hough cir-
cles in the filtered back projection, with a lower limit on
the radius of 10px, and an upper limit on the radius of
60px, as we have a ball whose diameter is about 17cm
(which is pretty big).

To select which Hough circles correctly match a ball,
we compute the histogram of the region of the image they
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circle, and compare it to another histogram of the ball (for
example a histogram on HSV). We set a threshold for the
distance between those two histograms (at the moment
this threshold is 300 for the chi-square distance metric,
but the average distance of the histograms from the train-
ing set to this average histogram is 1.5 with a standard
deviation of 0.2).

Figures 2 shows how the initial image is changed by the
back projection.

Figure 2: A frame from the video and its thresholded and
filtered back projection.

1.4 Filtering The Results
The output of the Hough circle algorithm is a list of pa-
rameters of circles in the form of [xi, yi, di] where xi, yi
are the center of the ball and di is the diameter. Since the
detection process depends heavily on the color, there are
many fake circles that are also considered as a ball in the
previous section. In order to remove these circles that are
not really balls, we perform a filtering using the histogram
distance and the process goes as follow:

1. For each circles we generate a binary mask, which

is used for extracting the part of the frame that is
considered as a ball in the previous step.

2. With the extracted part of the frame, we compute the
histogram distance of that portion to the histogram
file that we learn from the training data set. With a
proper threshold, any circle that is too far from the
training data is dropped.

1.5 Kalman filter

We take the following model as being our Kalman filter:

Xk+1 = AXk + wk+1

Zk = HXk + vk

Xk =


xk
yk
zk
xk−1

yk−1

zk−1


Zk =

xmkymk
zmk


wk+1 ∼ N(0, Q)

vk ∼ N(0, R)

A =

(
(1 + ∆τk

∆τk−1
)× I − ∆τk

∆τk−1
× I

I 0

)
H =

(
I 0

)

Q =


α 0 0 0 0 0
0 α 0 0 0 0
0 0 β 0 0 0
0 0 0 α 0 0
0 0 0 0 α 0
0 0 0 0 0 β


R =

γ 0 0
0 δ 0
0 0 γ



∆τk it the time difference between the measurement of
xk and that of xk+1. As we might not have a constant
frame rate, we take this into account. Q and R are very
simple for the moment but could be improved later on
if needed. α, β, γ, δ are variance constants, and we choose
β > α and δ > γ as we have a greater uncertainty along the
z direction for the time update and along the y direction
for the measurement, which is the direction along which
the camera is looking.
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1.6 Post-processing
With the coordinates of the two sets of balls in two differ-
ent frames, the velocity of each ball is simply given byvxvy

vy

 =

xtyt
zt

−
xt−1

yt−1

zt−1

× fps (9)

where fps is the frame rate of the video captured from the
camera, which is the same as the frequency.

Besides outputting the velocity of the balls for the con-
trol program and motion planning, it is necessary to save
the position of each balls for computing the velocity in the
next frame.

2 The decision algorithm
Our algorithm is given as inputs a position and a veloc-
ity for the ball. It is triggered when two conditions are
true: the Kalman filter has been fed with at least four
measurements and the ball is going to go inside a sphere
of radius r within t seconds. We can define r and t as be-
ing respectively a fear factor and a reaction time. Those
two parameters will need to be tuned when integrating the
algorithm in a real robot. We developed two methods to
move the robot: an ‘optimal’ method and a parallelepi-
pedic robot method.

2.1 The ‘optimal’ method
This method uses a gradient descent algorithm to compute
which point of the trajectory parabola will be the closest
to the robot. Let us call ~d the unitary direction the robot
is going to follow, ~ropt the position of the closest point (the
robot is at (0,0,0), and ~vopt the velocity of the ball at this
point.

The method has one parameter, θ ∈ [0; π2 ] and we define

~d = − cos θ
~ropt
‖~ropt‖

+ sin θ
~vopt
‖~vopt‖

This definition forces the robot to move away from the
parabola while moving in the direction of the ball with an
angle of θ. The parameter θ has to be chosen in order to
minimize the chances of being hit when the the uncertainty
over the position of the ball is high (the ball is going to hit
the robot later if it moves in the same direction). We’ll
come back on this parameter later in the paper.

2.2 The parallelepipedic robot method
In this method, we use a model of a parallelepipedic robot.
We define three parameters Rx, Ry, and Rz, which are
positive real numbers. They define six planes: x = ±Rx,
y = ±Ry, z = ±Rz. We only consider positive time values.
For each dimension (x,y, or z) we get four position values
that we sort according to the time they are going to be
reached with increasing time. We get the first ones for

each direction, denote them by x’, y’, z’, and assign a
weight to each dimension:

w(x) = −sign(x)

1 + x2

The displacement vector ~d is then

~d =
1∥∥∥∥

w(x′)
w(y′)
w(z′)

∥∥∥∥
w(x′)
w(y′)
w(z′)



.

2.3 Comparison

We compare the execution time of both our algorithms
and the dot product of ~d with ~vopt by looking at the mean
of those statistics over 48020 trajectories in Table 1 for
the mean, Table 2 for the variance, and Table 3 for the
median.

We see that the gradient descent is 100 times slower
than the intersection algorithm, which is not a surprise.
We can also see that tuning the parameters Rxyz allow us
to roughly control the angle between the optimal velocity
and the chosen direction. However, the more we increase
R, the more the standard deviation increases. For R = 0
the angle is 13 degrees and most of the values are between
0 degrees and 13 degrees (the median value is 10 degrees).
We have the same thing for R = 0.2 but the maximum
angle is smaller. See Figure 3 for a graphical view of two
trajectories and two decisions for each of them.

The ‘optimal’ method is more reliable than the paral-
lelepipedic method, but the latter is still robust and it is
much less expensive to compute. Another comparison cri-
teria is the number of parameters to tune, but we could
take Rx = Ry = Rz to make it even.

3 Designing a grid for an experi-
ment

3.1 An experimental set

We will be throwing balls from various angles and record it
with our computer’s webcam which will be on the ground.
We set an n × n square grid around it of length L. We
record the time with a timer with absolute error ∆τ , and
register the starting x0 and ending x1 points of the ball
on the grid as well as the time τ it traveled.

We assume that the ground is a plane and that there
is no air resistance. The movement equations for the ball
are then:
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Data Optimal Parallelepipedic (R = 0.2) Parallelepipedic (R = 0)

Time (s) 10−2 10−4 10−4

Dot product cos θ 0.1141 0.2167

Table 1: Mean values over 48020 trajectories.

Data Parallelepipedic (R = 0.2) Parallelepipedic (R = 0)

Dot product 0.4422 0.3943

Table 2: Variance over 48020 trajectories.

Data Parallelepipedic (R = 0.2) Parallelepipedic (R = 0)

Dot product 0.0772 0.1626

Table 3: Median values over 48020 trajectories.

Figure 3: The parabolic trajectory, the ‘optimal’ direction
in gold, and the parallelepipedic direction in purple.

~a = −g · ~ez
~v = −gt · ~ez + ~v0

~x =
−gt2

2
· ~ez + t · ~v0 + ~x0

Very simply we get ~v0 = ~x1−~x0

τ + gτ
2 · ~ez and

~v = −g(t− τ

2
) · ~ez +

~x1 − ~x0

τ
= ~f(~x0, ~x1, τ ; t) (10)

3.2 The measurement error
To get the error for the velocity estimate, we use this for-
mula:

~∆v = | ∂
~f

∂~x0
|∆~x0 + | ∂

~f

∂~x1
|∆~x1 + |∂

~f

∂τ
|∆τ

where ∆~x0 = ∆~x1 =

(
∆x
∆x

)
with ∆x = L

n . The ab-

solute value here for vectors and matrices means that we
take the absolute value of each cell.

From (10) we end up with the following value for the
velocity error:

~∆v =
2

τ

∆x
∆x
0

+
g

2
~ez −

~x1 − ~x0

τ2
∆τ (11)

From (11) we deduce an upper boundary for the norm
of the velocity vector in (12).

‖ ~∆v‖ ≤ 2

τ
∆x︸ ︷︷ ︸

εposition

+
g

2
∆τ︸ ︷︷ ︸

εvertical

+
‖~x1 − ~x0‖

τ2
∆τ︸ ︷︷ ︸

εhorizontal

(12)
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We can then divide our error into three additive compo-
nents: εposition, εvertical and εhorizontal. εposition is exactly
the error we make when we don’t estimate the starting
and ending points correctly (hence the 2). εvertical is the
error on the vertical speed, which only depends on the ac-
celeration g (times the error on time). εhorizontal is the
error on the speed on the place (x, y). It is the product
of the average horizontal speed ‖~x1−~x0‖

τ times the relative
error on time εr,τ = ∆τ

τ .

3.3 Optimization of the set
To optimize our set we want to minimize the upper bound
(12) of the norm of the speed vector. We will then balance
our three ε. We give a more appropriate upper bound for
the norm of the error on the speed measurement in (13)
by assuming that ‖~x1 − ~x0‖ ≤

√
2L which is the length of

the diagonal of the grid.

‖ ~∆v‖ ≤ 2L

τn︸︷︷︸
εposition

+
g

2
∆τ︸ ︷︷ ︸

εvertical

+

√
2L

τ2
∆τ︸ ︷︷ ︸

εhorizontal

(13)

First we will take εposition = εhorizontal. This yields
equation (14).

n =

√
2

εr,τ
(14)

Then we group εposition and εhorizontal into εplanar =
εposition+εhorizontal = 2εhorizontal. We now want εplanar =
εvertical, which yields (15).

L =
gτ2

2
√

2
(15)

By choosing τ ≈ 1 and knowing that our maximum
precision for τ is τ = 1

30 (30 is our frame rate), we get:

εr,τ = 0.033

nopt = 42.42

Lopt = 3.47m

∆xopt = 0.08m

εplanar,opt = 0.16

‖ ~∆vopt‖ ≤ 0.32

If a ball is thrown at a speed of 3ms−1, the error we
make when we estimate the speed is roughly 10%.

For practical purposes, here are the dimensions we chose
for the grid: L = 4m and n = 40.

4 The experiment

4.1 Building the grid
Our grid is made of craft paper. First, we drew a 10-by-10
grid on it.

To get more precision, we drew the diagonal lines joining
all the intersections. This gives us a 14-by-14 equivalent
grid. But because we have quite accurate eyes, for us this
divides each cell into four cells, so we have a 20-by-20
’psychologically’ equivalent grid. We can even go further,
because the diameter of a ball is 17cm and our 40-by-
40 grid has cells of length 10cm, then we can accurately
still divide psychologically into smaller cells our grid. Our
maximal precision is 8.5cm, the radius of the ball, so we
can get up to the equivalent of a 45-by-45 grid for a ∆x =
0.085. One cell is shown on Figure 4, and the real grid is
shown on Figure 5.

Figure 4: One cell of our grid, which consists of the red
and blue vertices and the solid lines. The green vertices
represent a grid that the brain can guess (the 100-by-100
grid is not represented here).

Figure 5: This is the 4m-by-4m grid we built with craft
paper.
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4.2 The measurements

We put the computer with the webcam on a vertex that we
define as the origin of the grid (the point (0, 0)). We found
it easier to bounce the ball instead of throwing it from one
point. We recorded the experiment with another camera
two get the positions of the first and second bounces as
well as the time between both. We did the experiment in
a very simple set up, without too much yellow objects in
the frame.

Our results for the five videos are shown on Table 4 page
8.

The two facts that stand out from these figures are: the
precision for the position is very good, and the precision
for the velocity is awful. The velocity is computed by using
the backward Euler method, but the measurements of the
positions are very shaky, so the fact that they are good
does not compensate the velocity error. We’ll discuss in
the last section how to improve on the velocity estimation.

Moreover, the position error on the third experiment is
bigger than the others. As we can see in the plot of Fig-
ure 6 for the second experiment, the ball moved mostly in
the medium range and the estimation is close to the ac-
tual position. However in the third experiment, when the
ball was moving in the far region, the estimation becomes
inaccurate and unreliable.

5 Future work

Our algorithms are implemented but we still need to plug
them into the robot and test them on a real robot. Be-
fore that there we must get the velocity estimation right.
This will be achieved by either changing the approxima-
tion method (for example a semi-implicit Euler method) or
filtering the velocity in some way. One would be tempted
to add a second Kalman filter to smooth the velocity esti-
mation, but this might be globally equivalent to include in
our already existing Kalman filter the velocity of the ball.
This means that we would either have two Kalman filters
with state dimensions 6 and 3, or one Kalman filter with
state dimension 6 or 9.

Another bottleneck error is the error on the Hough cir-
cles. We will have to find a more reliable method for ball
detection if we want to improve our precision over the po-
sition estimation.

At the moment, we tune the decision algorithms by
hand, but we could use a method to optimize these param-
eters with a learning algorithm. The observations would
be binary: ‘the robot has been hit’ and the state contin-
uous. We are currently thinking of using Bayesian proba-
bilities to optimize our parameters.
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Data Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

positionerror 0.567 0.395 1.449 0.522 0.796
var(positionerror) 0.327 0.096 1.025 0.289 0.383
∆v 0.533 0.576 0.606 0.544 0.488
verror 8.994 5.931 25.459 12.811 35.202
var(verror) 169.196 20.58 749.366 481.694 693.428

Table 4: Our average results for the five experiments and their variance (SI units).

8


	Trajectory Estimation
	Camera Model
	Setting Up the Parameters
	Exploiting the model
	Correction to the model
	Fitting Result

	Using histograms for detection
	Filtering The Results
	Kalman filter
	Post-processing

	The decision algorithm
	The `optimal' method
	The parallelepipedic robot method
	Comparison

	Designing a grid for an experiment
	An experimental set
	The measurement error
	Optimization of the set

	The experiment
	Building the grid
	The measurements

	Future work

