Learning to Search

Sanjiban Choudhury
We can use learning for TWO things:

HOW to search?

Create a graph

Search the graph

Interleave

Learn how to speed up search

WHAT to search?

Learn the underlying cost of a path
CRUSHER robot from CMU
Activity!
Think-Pair-Share!

Think (30 sec): We want CRUSHER to go from A to B. What are some of the components for the cost function? How can we weigh these various components?

Pair: Find a partner

Share (45 sec): Partners exchange ideas
Wait ... why can’t we use DAGGER?

Why learn cost functions vs learn the policy?
Can we learn a cost function for CRUSHER navigation?
Let’s formalize!
Learning to Search (LEARCH)

Min distance Stay on roads Stay near trees
Learning to Search (LEARCH)

Given dataset: \(\{ \xi_i^h, \phi_i \}_{i=1}^N \) (Human demo) (Map)

Solve for cost \(C_\theta(\xi) \)
for $i = 1, \ldots, N$

$$\xi^*_i = \min_{\xi} [C_\theta(\xi, \phi_i) - \gamma(\xi, \xi^h)]$$

$$\theta^+ = \theta - \eta [\nabla_\theta C_\theta(\xi^*_i, \phi_i) - \nabla_\theta C_\theta(\xi^*_i, \phi_i) + \nabla_\theta R(\theta)]$$

Loop over datapoints
Call planner!

(Push down human cost)
(Push up planner cost)

Update cost
for $i = 1, \ldots, N$

$$\xi^*_i = \min_{\xi} [C_\theta(\xi, \phi_i) - \gamma(\xi, \xi^h)]$$

$$\theta^+ = \theta - \eta [\nabla_\theta C_\theta(\xi^*_i, \phi_i) - \nabla_\theta C_\theta(\xi_i^*, \phi_i) + \nabla_\theta R(\theta)]$$

Loop over datapoints
Call planner!
Update cost

(Push down human cost) (Push up planner cost)
Learning to Search (LEARCH)

for $i = 1, \ldots, N$

\[
\xi_i^* = \min_{\xi} [C_\theta(\xi, \phi_i) - \gamma(\xi, \xi^h)]
\]

\[
\theta^+ = \theta - \eta [\nabla_\theta C_\theta(\xi_i^h, \phi_i) - \nabla_\theta C_\theta(\xi_i^*, \phi_i) + \nabla_\theta R(\theta)]
\]

Loop over datapoints

Call planner!

(Push down human cost) (Push up planner cost)

Update cost