CS 4756/5756: Robot Learning

Sanjiban Choudhury
WHAT A TIME TO BE ALIVE!
AI tools that are OPEN!

ChatGPT

Examples
- Explain quantum computing in simple terms
- Got any creative ideas for a 10-year-old's birthday?
- How do I make an HTTP request in JavaScript?

Capabilities
- Remembers what user said earlier in the conversation
- Allows user to provide follow-up corrections
- Trained to decline inappropriate requests

Limitations
- May occasionally generate incorrect information
- May occasionally produce harmful instructions or biased content
- Limited knowledge of world and events after 2021

Free Research Preview: ChatGPT is optimized for dialogue. Our goal is to make AI systems more natural to interact with, and your feedback will help us improve our systems and make them safer.
AI tools that are OPEN!

```python
# Define the equations of motion for the double inverted pendulum

def equations_of_motion(y, t, L1, L2, m1, m2, g):
    th1, th2, dth1, dth2 = y
    dydt = [dth1,
             dth2,
             (g*(2*m1 + m2)*np.sin(th1) - m2*g*np.sin(th1 - 2*np.sin(th2)) - 2*np.sin(th1 - th2) - m2*(dth2*L2**2 + dth1*L1*np.cos(th1 - th2)))/(L1*(2*m1 + m2 - m2*np.cos(2*th1 - 2*th2))",
             (2*np.sin(th1)*th2*(dth1*L1**2 + (m1 + m2)*np.cos(th1) + np.cos(th1 - th2)) + 2*m1*L2**2 - m2*np.cos(th1 - th2)))/(L2*(2*m1 + m2 - m2*np.cos(2*th1 - 2*th2))]
    return dydt

# Set up the initial conditions and other parameters
y0 = [np.pi/2, np.pi/2, 0, 0]
L1 = 1
L2 = 1
m1 = 1
m2 = 1
g = 9.81

# Solve the equations of motion using odeint
from scipy.integrate import odeint
t = np.linspace(0, 10, 1000)
sol = odeint(equations_of_motion, y0, t, args=(L1, L2, m1, m2, g))

# Animate this pendulum ...
```
AI tools that are OPEN!

ChatGPT

Examples

"Explain quantum computing in simple terms" →

"Got any creative ideas for a 10 year old's birthday?" →

"How do I make an HTTP request in JavaScript?" →

Capabilities

Remembers what user said earlier in the conversation

Allows user to provide follow-up corrections

Trained to decline inappropriate requests

Limitations

May occasionally generate incorrect information

May occasionally produce harmful instructions or biased content

Limited knowledge of world and events after 2021

Help me complete this code to animate a double inverted pendulum:

```python
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

# Define the equations of motion for the double inverted pendulum
def equations_of_motion(y, t, L1, L2, m1, m2, g):
    # Code goes here...
```

ChatGPT Jan 2 Version. Free Research Preview. Our goal is to make AI systems more natural and safe to interact with. Your feedback will help us improve.
AI tools that are OPEN!
AI tools that are OPEN!

```
seed_and_prompt_sequence = [
    3764, 'in the beginning there was nothing, just darkness',
    1537, 'special effects render of the big bang',
    6573, 'HD photo of a large amount of spiral galaxies',
    1791, 'early planet formation in the solar system',
    9973, 'the Hadean earth was bombarded with asteroids and massive volcanic eruptions',
    736, 'panoramic view of earth with ocean surrounding newly formed land and volcanos',
    3639, 'hydrothermal vents at the bottom of the ocean',
    3559, 'bacteria under a microscope',
    4724, 'bacteria under a microscope',
    3359, 'ammonites floating in the ocean',
    6344, 'the first reptile to leave the ocean and crawl onto the land',
    6344, 'the first reptile to leave the ocean and crawl onto the land',
    6813, 'massive brachiosaurus walking amidst a green mountain range',
    6678, 'the extinction of the dinosaurs be a huge meteorite',
    7450, 'small mammals thriving in a cave',
    9766, 'small, prehistoric mammals living in the jungle',
    5009, 'group of monkeys in the forest',
    7287, 'HD photograph of neanderthal, the first man',
    6008, 'cave painting',
    208, 'cavemen tribe gathered around a fire at night looking at the stars',
    2222, 'maasai tribe hunting on the savanna with spears',
    571, 'homo sapiens using stone tools',
    632, 'a small, tribal village with huts',
    1332, 'at the dawn of civilization, small villages emerged',
    2496, 'ancient egypt, the first massive civilisation',
    1869, 'the height of the roman empire, incredible architecture, by Greg Rutkowski',
    7559, 'medieval town square',
    1265, 'medieval city',
    6628, 'the skyline of New York city',
]```
AI tools that are OPEN!
Where are the robots?
Robots are not far behind!
Robots are not far behind!

Self-driving companies going driverless …
Robots are not far behind!

Boston Dynamics are starting to sell their robots ...
Robots are not far behind!

Drones are getting more reliable ...
But ...

... robots are not in millions of homes yet.

Why?
The way we program robots today is ... rigid!

Engineers hand-craft behaviors

Ship robot

Choose option
1. Start
2. Clean
3. Stop

Frustrate users!

Not flexible enough to be used by everyday users for everyday tasks
This restricts robots to a CLOSED world

The Dream

Reality
How can we get robots out of the factory into the OPEN WORLD?
Activity!
Build robot apprentice to help grandma!

Demonstrations, Language

Interactive feedback
Think-Pair-Share

Think (30 sec): Think of *ALL* the challenges to building such a robot

Pair: Find partners

Share (45 sec): Partners exchange ideas
Learn from interactions from both humans and the world.
How should robots learn from interactions?
WHY this course?

Formulate as a Markov Decision Problem (MDP)

Solve MDPs using an all-purpose toolkit
(Imitation/Reinforcement learning, Model based/free)

Deploy learners in real-world
(Safety, distribution shift, value alignment)

Take any robot application
Why I work on robots

“Sanjiban”
He / Him

To better understand humans ...
“Sanjiban”
He / Him

Undergrad: First robot soccer team in India!

Learn strategies like humans?
PhD: Full-scale autonomous helicopter flight

“Sanjiban”
He / Him

Fly like a human?
PostDoc: Mobile manipulator in the wild

“Sanjiban”
He / Him

Manipulate unknown objects like *humans*?
“Sanjiban”
He / Him

Research Engineer: Self-driving

Drive alongside humans?
PoRTaL: People and Robots, Teaching and Learning
Belonging
How should robots learn from interactions?
Self-driving
Lidar
Radar
Camera
Maps

Perception

Preference

Learning!!

Prediction

Decision Making

State
Activity: What is “good” behavior in a left turn?
Activity!
Activity: What is “good” behavior in a left turn?
Lesson #1

Values are implicit in human driving!
Lidar
Radar
Camera
Maps

Perception

State

Prediction

Decision Making
Brainstorm: How can we predict the pedestrian motion?
Lesson #2
Models are useful fictions
Fuse complementary sensors

LiDAR

Radar

Camera
Lesson #3

Solve for the state that explains all observations
The journey ahead!
Planning & Control
Imitation Learning
Localization & Mapping
World Models & Forecasting
Robot Perception
Fundamentals
Open Challenges
Planning & Control
Imitation Learning
World Models & Forecasting
Robot Perception
Fundamentals
Open Challenges
Logistics
Website is the ONE true hub

https://www.cs.cornell.edu/courses/cs4756/2023sp/
Assignments [65%]

Final Project [30%]

Participation [5%]

https://www.cs.cornell.edu/courses/cs4756/2023sp/
Announcement!
Assignment 0

https://github.com/portal-cornell/cs4756_robot_learning/tree/main/assignments/HW0

Link in website!

Checks familiarity with PyTorch!

Checks probability fundamentals!

Due Tuesday 1/31!
Graduate Version (CS5756)

If you are enrolled in CS 5756, every assignment has an extra question that you must solve.

This can be either an extra experiment or extra theory question.

Undergraduates (CS 4756) do not have to solve this question. But there is extra credit if you do!
Books and other resources

Work-in-progress book

Modern Adaptive Control and Reinforcement Learning,
James A. Bagnell, Byron Boots, and Sanjiban Choudhury

(Please feel free to send me feedback)

For other resources, keep checking website
Course Policies

All policies are posted on the Website!

Course Website: 3 TOTAL late days. Any assignment turned in late will incur a reduction in score by 33% for each late day.

Academic Integrity: Any work presented as your own must be your own, with no exceptions tolerated. Submitting work created by ChatGPT, or copied from a bot or a website, as your own work violates academic integrity.
ChatGPT!

Use of text generation/editing systems such as ChatGPT: For each component of the workload, the vast majority of the intellectual work must be originated by you, not by text generation systems. It is OK to use aids for writing fluency --- but note that writing fluency is not part of the assessment rubrics below anyway.

i). Example of something that is allowed: You write the initial draft(s), review its contents. You then use some form of text generation system to proofread and improve the flow. You do not use the system's output to add extra content.

ii). Example of something that is definitely not allowed: You essentially use a text generation system to generate an early draft, even if you later post-edit and correct the output.

iii). Example of something that is OK but requires special treatment. You start with the procedure in i). But, the system output includes good points that you hadn’t thought of before, or makes you realize that a point you had made isn’t quite right. You may include the new material and/or make appropriate edits, but you should mention what specific system(s) you used and what changes you made based on it.
The Crew
Yuki Wang

• 1st Year PhD Student in CS
• A member of the PoRTaL lab
• Interested in high level task-planning for robots
• Fun fact: Because I learned Japanese in college, I invented a new language “JanKoreanglish”, which mixes Japanese, Korean, and English in one sentence to annoy my friends.
Juntao Ren

Interested in using IL/RL to efficiently teach robots how to make safe and optimal decisions in assisting humans.

Currently working on building a library of low-level skills for our robot Hal at PoRTaL :).

Fun fact: I used to play water polo in high school.
• Kushal Kedia, PhD Student
• Research Interests: Motion Planning, Human-Robot Interaction
• Fun Fact about me: I love collecting merchandise for my favourite sports team, Chelsea! Let’s chat about soccer :)

Abhishek Masand

MEng Computer Science’23

**Interests:** Large Language Models, Reinforcement Learning, Representation Learning, NLP

**Current Research:** Goal directed influence and reasoning for large language models. Also interested in exploring various strategies to control the influence of large language models on downstream tasks, and improving unsupervised language quantification reward functions.

**Previous Work:** Recently worked as an AI Engineer at Microsoft, where he collaborated with the Office of the CTO and Microsoft Research NLP group to develop libraries to facilitate the use of LLMs and applications demonstrating OpenAI models.

**Fun Fact:** I started out as a consultant and over time became a researcher.
How should robots learn from interactions?

Learning!!

Perception → State → Prediction → Decision Making

Why this course?
- Formulate as a Markov Decision Problem (MDP)
- Solve MDPs using all-purpose toolkit (Imitation/Reinforcement learning, Model based/free)
- Take any robot application
- Deploy learners in real-world (Safety, distribution shift, value alignment)