Review of Algorithms

Sanjiban Choudhury
Model Based Reinforcement Learning

Learn Model

Plan with Learned Model
Strategy

Train a model on state actions visited by the expert!
In reality the shortcut ends in death ...
Strategy

Train a model on state actions visited by the expert!

Train a model on state actions visited by the learner!
Model \[s' = \hat{M}(s, a) \]

World \[s' = M^*(s, a) \]
Model $s' = \hat{M}(s, a)$
World $s' = M^*(s, a)$

Model predicts it can’t get to trophy, but can get to 1
Model predicts it can’t get to trophy, but can get to $1.

Model: \(s' = \hat{M}(s, a) \)

World: \(s' = M^*(s, a) \)
Model
\[s' = \hat{M}(s, a) \]

World
\[s' = M^*(s, a) \]

Training error is zero!
But the model is just pessimistic!
Strategy

Train a model on state actions visited by the expert!

Train a model on state actions visited by the learner!

Train a model on state actions visited by both the expert and the learner!
How do we derive this strategy?
What we care about is the performance difference?

\[J_{M^*}(\hat{\pi}) - J_{M^*}(\pi^*) \]
Recap of Algorithms