Temporal Difference & Q Learning

Sanjiban Choudhury

The story thus far ...

Maps

What if the transitions are unknown?

Activity!

Think-Pair-Share

Think (30 sec): What is the MDP <S, A, C, T> for this robot? Is the transition T known?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

Model-Based OR Model Free?

Model Free

Directly learn π or Q(s,a)

Model Based

Learn a model T(s'|s,a), plan with model to find π

Model-Based OR Model Free?

Model Free

Directly learn π or Q(s, a)

Model Based

Learn a model P(s'|s,a), plan with model to find π

WHAT MAKES

REINFORCEMENT LEARNING HAR DER

THAN

SUPER VISE D LEARN ING

Exploration vs Exploitation

Doors

What if we played the game over multiple time steps?

How do we estimate values of each door?

Two Ingredients of RL

Exploration Exploitation

Estimate Values Q(s, a)

Two Ingredients of RL

Exploration Exploitation

Recap: The Swamp MDP

$$\langle S, A, C, \mathcal{I} \rangle$$

- Two absorbing states:Goal and Swamp
- Cost of each state is 1
 till you reach the goal
- Let's set T = 30

When the MDP is known!

Run Value
/ Policy Iteration

When MDP is known: Policy Iteration

Iter: 0

$$V^{\pi}(s) = c(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim \mathcal{J}(s, a)} V^{\pi}(s')$$

$$V^{\pi}(s) = c(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^{\pi}(s')$$

$$\pi^{+}(s) = \arg\min_{a} c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^{\pi}(s')$$

Estimate value

Improve policy

What happens when the MDP is *unknown?*

Need to estimate the value of policy

Value $V^{\pi}(s)$

Policy π

Estimate the value of policy from sample rollouts

Roll outs

Policy π

Estimate the value of policy from sample rollouts

Roll outs

Value $V^{\pi}(s)$

Activity!

Think-Pair-Share

Think (30 sec): Given a bunch of roll-outs, how can you estimate value of a state? (Hint: More than one way!)

Pair: Find a partner

Share (45 sec): Partners exchange ideas

Option 1: Trust only the actual returns!

Monte Carlo Evaluation

Goal: Learn $V^{\pi}(s)$ from complete rollout

$$S_1, a_1, c_1, S_2, a_2, c_2, \ldots \sim \pi$$

Define: Return is the total discounted cost

$$G_t = c_{t+1} + \gamma c_{t+2} + \gamma^2 c_{t+3} + \dots$$

Value function is the expected return

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t | s_t = s]$$

First Visit Monte Carlo

For episode in rollouts:

If state s is visited for *first* time t

Update
$$V(s) \leftarrow V(s) + \alpha(G_t - V(s))$$

Law of large numbers: $V(s) \rightarrow V^{\pi}(s)$

Can we do better than Monte Carlo?

What if we want quick updates? (No patience to wait till end)

What if we don't have complete episodes?

Option 2: Believe in Bellman

Recap: Value of a state

Expected discounted sum of cost from starting at a state and following a policy from then on

Recap: Value of a state-action

$$Q^{\pi}(S_t, a_t) = c_t + \gamma c_{t+1} + \gamma^2 c_{t+2} + \cdots$$

Expected discounted sum of cost from starting at a state, executing action and following a policy from then on

$$Q^{\pi}(s_t, a_t) = c(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim \mathcal{T}(s_t, a_t)} V^{\pi}(s_{t+1})$$

Temporal Difference (TD) learning

Goal: Learn $V^{\pi}(s)$ from traces

$$(s_t, a_t, c_t, s_{t+1})$$
 (s_t, a_t, c_t, s_{t+1}) (s_t, a_t, c_t, s_{t+1}) (s_t, a_t, c_t, s_{t+1})

Recall value function $V^{\pi}(s)$ satisfies

$$V^{\pi}(s) = c(s, \pi(s)) + \gamma \mathbb{E}_{s'} V^{\pi}(s')$$

TD Idea: Update value using estimate of next state value

$$V(s_t) \leftarrow V(s_t) + \alpha \left(c_t + \gamma V(s_{t+1}) - V(s_t) \right)$$

TD Learning

For every (s_t, a_t, c_t, s_{t+1})

$$V(s_t) \leftarrow V(s_t) + \alpha(c_t + \gamma V(s_{t+1}) - V(s_t))$$

Did you spot the trick?

$$V^{\pi}(s) = c(s, \pi(s)) + \gamma \mathbb{E}_{s'} V^{\pi}(s')$$

$$V(s_t) \leftarrow V(s_t) + \alpha(c_t + \gamma V(s_{t+1}) - V(s_t))$$

Monte-Carlo

$$V(s) \leftarrow V(s) + \alpha(G_t - V(s))$$

Zero Bias

High Variance

Always convergence

(Just have to wait till heat death of the universe)

Temporal Difference

 $V(s) \leftarrow V(s) + \alpha(c + \gamma V(s') - V(s))$

Can have bias

Low Variance

May *not* converge if using function approximation

We have been talking about trying to learn the value of a given policy π $V^{\pi}(s) / Q^{\pi}(s,a)$

What if we wanted to learn the optimal value function $V^*(s) / Q^*(s, a)$

QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation

Training time **Distributed RL** Reward: Grasp success State, determined by subtracting Action, 5 Learned pre and post-drop images weights Reward i Inference time **Critic Function** State: 472x472 Image Q(State, Action)and gripper aperture Camera Action proposals Q-Values Robot Action: Gripper Cross-Entropy Method displacement arg max Q(State, Action)and aperture Action

Q-learning: Learning off-policy

For every (s_t, a_t, c_t, s_{t+1})

Can learn from any data!

$$Q^*(s_t, a_t) = Q^*(s_t, a_t) + \alpha(c(s_t, a_t) + \gamma \min_{a'} Q^*(s_{t+1}, a') - Q^*(s_t, a_t))$$

Large-scale Q-learning with continuous actions (QT-Opt)

Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan, Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision-Based Robotic Manipulation Skills

Is this ... magic?

We just learned in IL how distribution shift is a big deal ...

It's not magic. Q-learning relies on a set of assumptions:

- 1. Each state-action is visited infinite times
- 2. Learning rate α must be annealed over time

When things fail!

Boyan, Justin A and Moore, Andrew W, Generalization in Reinforcement Learning: Safely Approximating the Value Function. NeurIPS 19948

What happens when we run value iteration with a quadratic?

What happens when we run value iteration with a quadratic?

What happens when we run value iteration with a quadratic?

The problem of Bootstrapping!

$$Q^*(s_t, a_t) = Q^*(s_t, a_t) + \alpha(c(s_t, a_t) + \gamma \min_{a'} Q^*(s_{t+1}, a') - Q^*(s_t, a_t))$$

tl,dr

