Topics for Today

- Pragmatics of discourse context
 - reference resolution
 - noun phrase coreference resolution
 - machine learning approach to NP coreference resolution

The problem of reference resolution

Gracie: Oh yeah... and then Mr. And Mrs. Jones were having matrimonial trouble, and my brother was hired to watch Mrs. Jones.

George: Well, I imagine she was a very attractive woman.

Gracie: She was, and my brother watched her day and night for six months.

George: Well, what happened?

Gracie: She finally got a divorce.

George: Mrs. Jones?

Gracie: No, my brother’s wife.

George Burns and Gracie Allen in *The Salesgirl*

Reference resolution

- **Reference**: the process by which speakers use expressions like “John Simon” and “his” to denote a real-world entity
 - **Referring expressions**: NL expression used to perform reference
 - **Referent**: the entity that is referred to
 - **Shorthand form**: *his* refers to John Simon

Coreference

- **Coreference**: two referring expressions that are used to refer to the same entity are said to corefer.
 - *John Simon* is the *antecedent* of *his*.
- Reference to an entity that has been previously introduced into the discourse is called *anaphora*; and the referring expression used is said to be *anaphoric*.

John Simon, Chief Financial Officer of Prime Corp. since 1986, saw *his* pay jump 20%, to $1.3 million, as the 37-year-old also became the financial-services company’s president...
Types of referring expressions

- **Indefinite noun phrases**
 - Introduce entities that are new to the hearer into the discourse context
 - I saw a *Subaru WRX* today.
 - I saw *this awesome Subaru WRX* today.

- **Definite noun phrases**
 - Refer to an entity that is identifiable to the hearer
 - It has already been mentioned in the discourse
 - It is contained in the hearer’s set of beliefs about the world
 - The uniqueness of the object is implied by the description itself
 - I saw a Subaru WRX today. *The WRX* was blue and needed a wash.
 - *The Indy 500* is the most popular car race in the US.
 - *The fastest car in the Indy 500* was a Subaru WRX.

Types of referring expressions

- **Pronouns**
 - Another form of definite reference
 - Referent must have a high degree of activation or **salience** in the discourse model
 - John went to Bob’s party, and parked next to a beautiful Subaru WRX. He went inside and talked to Bob for more than an hour. Bob told him that he recently got engaged.
 - (a)?? He also said that he bought *it* yesterday.
 - (a’) He also said that he bought *the WRX* yesterday.
 - Cataphora: referring expression is mentioned before its referent
 - Before *he* bought *it*, John checked over the WRX carefully.

Types of referring expressions

- **Demonstrative pronouns**
 - Behave somewhat differently from simple definite pronouns
 - Can appear alone or as determiners
 - Choice of *this* or *that* depends on some notion of spatial or temporal proximity
 - I bought a WRX yesterday. It’s similar to the one I bought a year ago. *That one* was really nice, but I like *this one* even better.

- **One-anaphora**
 - Blends properties of definite and indefinite reference
 - I saw no fewer than 6 Subaru WRX’s today. Now I want *one.*
 - May introduce a new entity into the discourse, but it is dependent on an existing referent for the description of this new entity.

Topics for today

- Pragmatics of discourse
 - reference resolution
 - noun phrase coreference resolution
 - machine learning approach to NP coreference resolution
 - just the basics
Noun Phrase Coreference Resolution

- Identify all phrases that refer to each real-world entity mentioned in the text

John Simon, Chief Financial Officer of Prime Corp. since 1986, saw his pay jump 20%, to $1.3 million, as the 37-year-old also became the financial-services company’s president...

Why It’s Hard

Many sources of information play a role

- head noun matches
 » IBM executives = the executives
 » Microsoft executives

- syntactic constraints
 » John helped himself to...
 » John helped him to...

- discourse focus, recency, syntactic parallelism, semantic class, agreement, world knowledge, ...

Why It’s Hard

No single source is a completely reliable indicator

- semantic preferences
 » Mr. Callahan = president =? the carrier

- number and gender
 » assassination (of Jesuit priests) = these murders
 » the woman = she = Mary =? the chairman

Why It’s Hard

Coreference strategies differ depending on the type of referring NP

- definiteness of NPs
 » … Then Mark saw the man walking down the street.
 » … Then Mark saw a man walking down the street.

- pronoun resolution alone is notoriously difficult
 » resolution strategies differ for each type of pronoun
 » some pronouns refer to nothing in the text

I went outside and it was snowing.
Types of referents: complications

- Inferrables
 - A referring expression does not refer to an entity in the text, but to one that is inferentially related to it.
 - I almost bought a WRX today, but a door had a dent and the engine seemed noisy.
 - Mix the flour, butter, and water. Stir the batter until all lumps are gone.

- Discontinuous sets
 - Referents may have been evoked in discontinuous phrases
 - John has a Volvo, and Mary has a Mazda. They drive them all the time.

- Generics – refer to a class of entities
 - I saw no fewer than 6 WRX’s today. They are the coolest cars.

Topics for today

- Pragmatics of discourse
 - reference resolution
 - noun phrase coreference resolution
 - machine learning approach to NP coreference resolution
 - just the basics

Traditional Knowledge-Based Approaches

Lappin and Leass [1994]

- hand-crafted heuristics and filters
 - syntactic filters [Lappin and McCord 1990a]
 - morphological filter
 - pleonastic pronoun filter (“It was raining.”)
 - procedure for identifying possible antecedents [Lappin and McCord 1990b]
 - salience assignment w.r.t. grammatical role, proximity, parallelism, etc.

- decision procedure

Problems

- Portability
- Robustness
- Few large-scale evaluations
- Evaluations make a number of simplifying assumptions
 - perfect parse
 - omit many difficult cases, e.g. pleonastic pronouns
- Impose coreference resolution strategies rather than learn them empirically
A Machine Learning Approach

- **Classification**
 - given a description of two noun phrases, \(NP_i \) and \(NP_j \), classify the pair as **coreferent** or **not coreferent**

Aone & Bennett [1995]; Connolly et al. [1995]; McCarthy & Lehnert [1995]; Soon, Ng & Lim [2001]; Ng & Cardie [2002]

Issues

- Training data
- Instance representation
- Learning algorithm
- Clustering approach

Training Data Creation

- **Creating training instances**
 - texts annotated with coreference information
 - one instance \(\text{inst}(NP_i, NP_j) \) for each ordered pair of NPs
 - \(NP_i \) precedes \(NP_j \)
 - feature vector: describes the two NPs and context
 - class value:
 - **coref**: pairs on the same coreference chain
 - **not coref**: otherwise

John Simon
Chief Financial Officer
his the 37-year-old president
Prime Corp.
the financial-services company

Singletons
1986
pay
20%
$1.3 million
Instance Representation

- 25 features per instance
 - lexical (3)
 » string matching for pronouns, proper names, common nouns
 - grammatical (18)
 » pronoun_1, pronoun_2, demonstrative_2, indefinite_2, ...
 » number, gender, animacy
 » appositive, predicate nominative
 » binding constraints, simple contra-indexing constraints, ...
 » span, maximalnp, ...
 - semantic (2)
 » same WordNet class
 » alias
 - positional (1)
 » distance between the NPs in terms of # of sentences
 - knowledge-based (1)
 » naïve pronoun resolution algorithm

Learning Algorithm

- RIPPER (Cohen, 1995)
 C4.5 (Quinlan, 1994)
 - rule learners
 » input: set of training instances
 » output: coreference classifier

- Learned classifier
 » input: test instance (represents pair of NPs)
 » output: classification confidence of classification

Clustering Algorithm

- Start with each NP in its own partition
- For each NP in the document
 - Consider every prior NP
 - If ML algorithm says “coreferent”, merge the partitions for the two NPs.

Evaluation

- MUC-6 and MUC-7 coreference data set
- documents annotated w.r.t. coreference
- 30 + 30 training texts (dry run)
- 30 + 20 test texts (formal evaluation)
- scoring program
 - recall
 - precision
 - F-measure: 2PR/(P+R)
Baselines...

<table>
<thead>
<tr>
<th></th>
<th>MUC-6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Match Any Word</td>
<td>41.3</td>
</tr>
<tr>
<td>Match Head Word</td>
<td>45.7</td>
</tr>
<tr>
<td>Single Cluster</td>
<td>93.8</td>
</tr>
<tr>
<td>Top System</td>
<td>59</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th></th>
<th>MUC-6</th>
<th>MUC-7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>Ng & Cardie</td>
<td>63.3</td>
<td>76.9</td>
</tr>
<tr>
<td>Best MUC System</td>
<td>59</td>
<td>72</td>
</tr>
</tbody>
</table>

Detailed Results

<table>
<thead>
<tr>
<th></th>
<th>C4.5</th>
<th>MUC-6</th>
<th>MUC-7</th>
<th>RIPPER MUC-6</th>
<th>MUC-7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>F</td>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>Original Soon</td>
<td>58.6</td>
<td>67.3</td>
<td>62.6</td>
<td>56.1</td>
<td>65.5</td>
</tr>
<tr>
<td>Duplicated Soon Bsln</td>
<td>64.0</td>
<td>67.0</td>
<td>65.5</td>
<td>55.2</td>
<td>68.5</td>
</tr>
<tr>
<td>Learning Framework</td>
<td>62.4</td>
<td>73.5</td>
<td>67.5</td>
<td>56.3</td>
<td>71.5</td>
</tr>
<tr>
<td>All Feats</td>
<td>70.1</td>
<td>58.3</td>
<td>63.6</td>
<td>65.3</td>
<td>56.9</td>
</tr>
<tr>
<td>Hand Feats</td>
<td>64.1</td>
<td>74.9</td>
<td>69.1</td>
<td>57.4</td>
<td>70.8</td>
</tr>
<tr>
<td>pronouns</td>
<td>-</td>
<td>77.5</td>
<td>-</td>
<td>57.4</td>
<td>-</td>
</tr>
<tr>
<td>proper</td>
<td>-</td>
<td>94.8</td>
<td>-</td>
<td>86.6</td>
<td>-</td>
</tr>
<tr>
<td>generic</td>
<td>-</td>
<td>54.7</td>
<td>-</td>
<td>64.8</td>
<td>-</td>
</tr>
</tbody>
</table>

Classifier for MUC-6 Data Set

```java
ALIAS = C: +
ALIAS = I: -
      | SOON_STR_NONPRO = C:
      |      | ANIMACY = NA: -
      |      | ANIMACY = I: -
      |      | ANIMACY = C: +
      | SOON_STR_NONPRO = I:
      |      | PRO_STR = C: +
      |      | PRO_STR = I:
      |      | PRO_RESOLVE = C:
          |      | EMBEDDED_1 = Y: -
          |      | EMBEDDED_1 = N:
          |      | PRONOUN_1 = Y: -
          |      | ANIMACY = NA: -
          |      | ANIMACY = I: -
          |      | ANIMACY = C: +
          |      | PRONOUN_1 = N:
          |      | MAXIMALNP = C: +
          |      | MAXIMALNP = I:
          |      | WNCLASS = NA: -
          |      | WNCLASS = I: +
          |      | WNCLASS = C: +
          |      | PRO_RESOLVE = I:
          |      | APPPOSITIVE = I: -
          |      | APPPOSITIVE = C:
          |      | GENDER = NA: +
          |      | GENDER = I: +
          |      | GENDER = C: -
```
Summary

- Performs better than the best non-learning approaches on two standard data sets

- Still lots of room for improvement
 - common noun resolution remains a major limiting factor