Topics for Today

- Pragmatics of discourse context
 - reference resolution
 - noun phrase coreference resolution
 - machine learning approach to NP coreference resolution

The problem of reference resolution

Gracie: Oh yeah... and then Mr. And Mrs. Jones were having matrimonial trouble, and my brother was hired to watch Mrs. Jones.

George: Well, I imagine she was a very attractive woman.

Gracie: She was, and my brother watched her day and night for six months.

George: Well, what happened?

Gracie: She finally got a divorce.

George: Mrs. Jones?

Gracie: No, my brother's wife.

George Burns and Gracie Allen in *The Salesgirl*

Reference resolution

- Reference: the process by which speakers use expressions like “John Simon” and “his” to denote a real-world entity
 - Referring expressions: NL expression used to perform reference
 - Referent: the entity that is referred to
 - Shorthand form: his refers to John Simon

Coreference

- Coreference: two referring expressions that are used to refer to the same entity are said to corefer
 - John Simon is the antecedent of his.
 - Reference to an entity that has been previously introduced into the discourse is called anaphora; and the referring expression used is said to be anaphoric.

John Simon, Chief Financial Officer of Prime Corp. since 1986, saw his pay jump 20%, to $1.3 million, as the 37-year-old also became the financial services company’s president...
Types of referring expressions

- **Indefinite noun phrases**
 - Introduce entities that are new to the hearer into the discourse context
 » I saw a *Subaru WRX* today.
 » I saw *this awesome Subaru WRX* today.

- **Definite noun phrases**
 - Refer to an entity that is identifiable to the hearer
 » It has already been mentioned in the discourse
 » It is contained in the hearer’s set of beliefs about the world
 » The uniqueness of the object is implied by the description itself
 ◆ I saw a Subaru WRX today. *The WRX* was blue and needed a wash.
 ◆ *The Indy 500* is the most popular car race in the US.
 ◆ *The fastest car in the Indy 500* was a Subaru WRX.

Types of referring expressions

- **Pronouns**
 - Another form of definite reference
 - Referent must have a high degree of activation or **salience** in the discourse model
 » John went to Bob’s party, and parked next to a beautiful Subaru WRX. He went inside and talked to Bob for more than an hour. Bob told him that he recently got engaged.
 (a)?? He also said that he bought *it* yesterday.
 (a’) He also said that he bought *the WRX* yesterday.
 - Cataphora: referring expression is mentioned before its referent
 » Before *he* bought *it*, John checked over the WRX carefully.

Types of referring expressions

- **Demonstrative pronouns**
 - Behave somewhat differently than simple definite pronouns
 » Can appear alone or as determiners
 » Choice of *this* or *that* depends on some notion of spatial or temporal proximity
 ◆ I bought a WRX yesterday. *It’s* similar to the one I bought a year ago. *That one* was really nice, but I like *this one* even better.

- **One-anaphora**
 - Blends properties of definite and indefinite reference
 » I saw no fewer than 6 Subaru WRX’s today. Now I want *one*.
 - May introduce a new entity into the discourse, but it is dependent on an existing referent for the description of this new entity.

Noun Phrase Coreference Resolution

- Identify all phrases that refer to each real-world entity mentioned in the text

John Simon, Chief Financial Officer of Prime Corp. since 1986, saw his pay jump 20%, to $1.3 million, as the 37-year-old also became the financial-services company’s president...
Why It’s Hard

Many sources of information play a role
– head noun matches
 » IBM executives = the executives
 » Microsoft executives

– syntactic constraints
 » John helped himself to...
 » John helped him to...

– discourse focus, recency, syntactic parallelism, semantic class, agreement, world knowledge, …

Why It’s Hard

No single source is a completely reliable indicator
– semantic preferences
 » Mr. Callahan = president =? the carrier

– number and gender
 » assassination (of Jesuit priests) = these murders
 » the woman = she = Mary =? the chairman

Coreference strategies differ depending on the type of referring NP
– definiteness of NPs
 » … Then Mark saw the man walking down the street.
 » … Then Mark saw a man walking down the street.

– pronoun resolution alone is notoriously difficult
 » resolution strategies differ for each type of pronoun
 » some pronouns refer to nothing in the text

I went outside and it was snowing.

Types of referents: complications

– Inferrables
 – A referring expression does not refer to an entity in the text, but to one that is inferentially related to it.
 » I almost bought a WRX today, but a door had a dent and the engine seemed noisy.
 » Mix the flour, butter, and water. Stir the batter until all lumps are gone.

– Discontinuous sets
 – Referents may have been evoked in discontinuous phrases
 » John has a Volvo, and Mary has a Mazda. They drive them all the time.

– Generics – refer to a class of entities
 – I saw no fewer than 6 WRX’s today. They are the coolest cars.
Topics for today

- Pragmatics of discourse
 - reference resolution
- noun phrase coreference resolution
- machine learning approach to NP coreference resolution
 - just the basics

Traditional Knowledge-Based Approaches

Lappin and Leass [1994]
- hand-crafted heuristics and filters
 - syntactic filters [Lappin and McCord 1990a]
 - morphological filter
 - pleonastic pronoun filter ("It was raining.")
 - procedure for identifying possible antecedents [Lappin and McCord 1990b]
 - salience assignment w.r.t. grammatical role, proximity, parallelism, etc.
- decision procedure

Problems

- Portability
- Robustness
- Few large-scale evaluations
- Evaluations make a number of simplifying assumptions
 - perfect parse
 - omit many difficult cases, e.g. pleonastic pronouns
- Imose coreference resolution strategies rather than learn them empirically

A Machine Learning Approach

- Classification
 - given a description of two noun phrases, \(NP_i \) and \(NP_j \), classify the pair as coreferent or not coreferent

\[[\text{John Simon}, \text{Chief Financial Officer}] \text{ of } [\text{Prime Corp.}] \]

since 1986, saw his pay jump 20%, to $1.3 million, as the 37-year-old also became the ….

Aone & Bennett [1995]; Connolly et al. [1995]; McCarthy & Lehnert [1995]; Soon, Ng & Lim [2001]; Ng & Cardie [2002]
A Machine Learning Approach

- Clustering
 - coordinates pairwise coreference decisions

Issues

- Training data
- Instance representation
- Learning algorithm
- Clustering approach

Training Data Creation

- Creating training instances
 - texts annotated with coreference information

 candidate antecedent \hspace{1cm} anaphor

 - one instance \textit{inst}(NP_i, NP_j) for each ordered pair of NPs
 \begin{itemize}
 \item \textit{NP}_i \text{ precedes} \textit{NP}_j
 \item feature vector: describes the two NPs and context
 \item class value:
 \begin{itemize}
 \item \texttt{coref} \hspace{1cm} pairs on the same coreference chain
 \item \texttt{not coref} \hspace{1cm} otherwise
 \end{itemize}
 \end{itemize}

Instance Representation

- 25 features per instance
 - lexical (3)
 \begin{itemize}
 \item string matching for pronouns, proper names, common nouns
 \end{itemize}
 - grammatical (18)
 \begin{itemize}
 \item pronoun_1, pronoun_2, demonstrative_2, indefinite_2, …
 \item number, gender, animacy
 \item appositive, predicate nominative
 \item binding constraints, simple contra-indexing constraints, …
 \item span, maximalnp, …
 \end{itemize}
 - semantic (2)
 \begin{itemize}
 \item same WordNet class
 \item alias
 \end{itemize}
 - positional (1)
 \begin{itemize}
 \item distance between the NPs in terms of # of sentences
 \end{itemize}
 - knowledge-based (1)
 \begin{itemize}
 \item naïve pronoun resolution algorithm
 \end{itemize}
Learning Algorithm

- RIPPER (Cohen, 1995)
 - rule learners
 - input: set of training instances
 - output: coreference classifier

- C4.5 (Quinlan, 1994)
 - rule learners
 - input: set of training instances
 - output: coreference classifier

- Learned classifier
 - input: test instance (represents pair of NPs)
 - output: classification confidence of classification

Clustering Algorithm

- Start with each NP in its own partition
- For each NP in the document
 - Consider each NP to its left
 - If ML algorithm says “coreferent”, merge the partitions for the two NPs.

Evaluation

- MUC-6 and MUC-7 coreference data set
- documents annotated w.r.t. coreference
- 30 + 30 training texts (dry run)
- 30 + 20 test texts (formal evaluation)
- scoring program
 - recall
 - precision
 - F-measure: 2PR/(P+R)

Baselines...

<table>
<thead>
<tr>
<th></th>
<th>MUC-6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Match Any Word</td>
<td></td>
</tr>
<tr>
<td>Match Head Word</td>
<td></td>
</tr>
<tr>
<td>Single Cluster</td>
<td>93.8</td>
</tr>
<tr>
<td>Top System</td>
<td>59</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>MUC-6</th>
<th>MUC-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>Ng & Cardie</td>
<td>63.3</td>
</tr>
<tr>
<td>Best MUC System</td>
<td>59</td>
</tr>
</tbody>
</table>

Summary

- Perform better than the best non-learning approaches on two standard data sets

- Still lots of room for improvement
 - common noun resolution remains a major limiting factor