Last Class: Test:)...Parsing and Partial Parsing

Today: Probabilistic Parsing

Goal: Find the most likely parse.

1. Parsing with PCFGs

2. Problems

3. Probabilistic lexicalized CFGs

Slide CS474-1

Probabilistic CFGs

Augments each rule in P with a conditional probability:

$$A \to \beta [p]$$

where p is the probability that the non-terminal A will be expanded to the sequence β . Often referred to as

$$P(A \to \beta)$$
 or

$$P(A \to \beta | A)$$
.

CFG's

A context free grammar consists of:

- 1. a set of non-terminal symbols N
- 2. a set of terminal symbols Σ (disjoint from N)
- 3. a set of productions, P, each of the form $A \to \alpha$, where A is a non-terminal and α is a string of symbols from the infinite set of strings $(\Sigma \cup N)$
- 4. a designated start symbol S

Slide CS474-2

Example

$S \rightarrow NP VP$	[.80]	$Det \rightarrow that[.05] \mid the[.80] \mid a$	[.15]
$S \rightarrow Aux NP VP$.15	$Noun \rightarrow book$.10
$S \rightarrow VP$.05	Noun \rightarrow flights	.50
$NP \rightarrow Det Nom$.20	Noun \rightarrow meal	.40
$NP \rightarrow Proper-Noun$	[.35]	$Verb \rightarrow book$	[.30]
$NP \rightarrow Nom$.05	$Verb \rightarrow include$.30
$NP \rightarrow Pronoun$.40	$Verb \rightarrow want$.40
$Nom \rightarrow Noun$	[.75]	$Aux \rightarrow can$.40
$Nom \rightarrow Noun Nom$	[.20]	$Aux \rightarrow does$.30
Nom → Proper-Noun Nom	[.05]	$Aux \rightarrow do$	[.30]
$\mathit{VP} o \mathit{Verb}$.55	$Proper-Noun \rightarrow TWA$.40
$\mathit{VP} o \mathit{Verb} \mathit{NP}$.40	Proper-Noun ightarrow Denver	[.40]
$VP \rightarrow Verb NP NP$	[.05]	$Pronoun \rightarrow you [.40] \mid I[.60]$	

Slide CS474-3

Why are PCFGs useful?

- \bullet Assigns a probability to each parse tree T
- Useful in disambiguation
 - Choose the most likely parse
 - Computing the probability of a parse If we make independence assumptions, $P(T) = \prod_{n \in T} p(r(n))$.
- Useful in language modeling tasks

Slide CS474-5

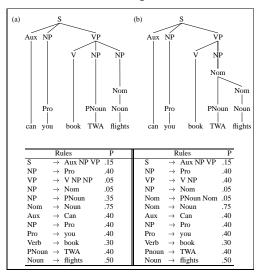
Where do the probabilities come from?

1. from a **treebank**:

$$P(\alpha \to \beta | \alpha) = Count(\alpha \to \beta)/Count(\alpha)$$

2. use EM (forward-backward algorithm, inside-outside algorithm)

Example



Slide CS474-6

Parsing with PCFGs

Produce the most likely parse for a given sentence:

$$\hat{T}(S) = argmax_{T \in \tau(S)} P(T)$$

where $\tau(S)$ is the set of possible parse trees for S.

• Augment the Earley algorithm to compute the probability of each of its parses.

When adding an entry E of category C to the chart using rule i with n subconstituents, E_1, \ldots, E_n :

$$P(E) = P(rule\ i\mid C) * P(E_1) * \dots * P(E_n)$$

 $\bullet\,$ probabilistic CYK (Cocke-Younger-Kasami) algorithm

Slide CS474-7

Problems with PCFGs

Do not model structural dependencies.

Often the choice of how a non-terminal expands depends on the location of the node in the parse tree.

E.g. Strong tendency in English for the syntactic subject of a spoken sentence to be a pronoun.

- 91% of declarative sentences in the Switchboard corpus are pronouns (vs. lexical).
- In contrast, 34% of direct objects in Switchboard are pronouns.

Slide CS474-9

Probabilistic lexicalized CFGs

- Each non-terminal is associated with its head.
- Each PCFG rule needs to be augmented to identify one rhs constituent to be the head daughter.
- Headword for a node in the parse tree is set to the headword of its head daughter.

Problems with PCFGs

Do not adequately model lexical dependencies.

Moscow sent more than 100,000 soldiers into Afghanistan...

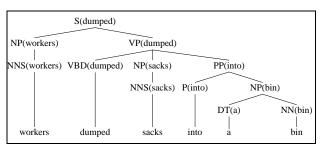
PP can attach to either the NP or the VP:

 $NP \rightarrow NP PP \text{ or } VP \rightarrow V NP PP$?

Attachment choice depends (in part) on the verb: send subcategorizes for a destination (e.g. expressed via a PP that begins with into or to or ...).

Slide CS474-10

Example



Slide CS474-11

Probabilistic lexicalized CFGs

View a lexicalized (P)CFG as a simple (P)CFG with a lot more rules.

 $VP(dumped) \rightarrow VBD(dumped) NP(sacks) PP(into) [3x10^{-10}]$

 $VP(dumped) \rightarrow VBD(dumped) NP(cats) PP(into) [8x10^{-10}]$

 $VP(dumped) \rightarrow VBD(dumped) \ NP(sacks) \ PP(above) \ [1x10^{-12}]$

...

Problem?

Slide CS474-13

Incorporating lexical dependency information

Condition the probability of a node n having a head h on two factors:

- 1. the syntactic category of the node n
- 2. the head of the node's mother h(m(n))

$$p(h(n) = word_i \mid n, \, h(m(n)))$$

Incorporating lexical dependency information

Incorporates lexical dependency information by:

- 1. relating the heads of phrases to the heads of their constituents;
- 2. including syntactic subcategorization information.

Syntactic subcategorization dependencies:

Probability of a rule r of syntactic category n: p(r(n) | n, h(n)).

Example: probability of expanding VP as VP \rightarrow VBD NP PP will be p (r | VP, dumped).

Slide CS474-14

Computing the proability of a parse

Producing the most likely parse for a given sentence changes from:

$$P(T) = \prod_{n \in T} p(r(n))$$

t.c

$$\mathbf{P}(\mathbf{T}) = \prod_{n \in T} \, \mathbf{p}(\mathbf{r}(\mathbf{n})|\mathbf{n},\!\mathbf{h}(\mathbf{n})) \, * \, \mathbf{p}(\mathbf{h}(\mathbf{n})|\mathbf{n},\!\mathbf{h}(\mathbf{m}(\mathbf{n})))$$

Slide CS474-15

Evaluation Measures and State of the Art

- \bullet labeled recall: # correct constituents in candidate parse of s / # correct constituents in treebank parse of s
- \bullet labeled precision: # correct constituents in candidate parse of s / total # of constituents in candidate parse of s
- crossing brackets: the number of crossed brackets

State of the art: 90% recall, 90% precision, 1% crossed bracketed constituents per sentence (WSJ treebank)