CS474 Natural Language Processing

- Last classes
 - N-gram models
- Today
 - Part-of-speech tagging
 - Introduction
 - Transformation-based learning

Part of speech tagging

- "There are 10 parts of speech, and they are all troublesome." -Mark Twain
- POS tags are also known as word classes, morphological classes, or lexical tags.
- Typically much larger than Twain's 10:
 - Penn Treebank: 45
 - Brown corpus: 87
 - **–** C7 tagset: 146

Part of speech tagging

 Assign the correct part of speech (word class) to each word/token in a document

"The/DT planet/NN Jupiter/NNP and/CC its/PRP moons/NNS are/VBP in/IN effect/NN a/DT mini-solar/JJ system/NN ,/, and/CC Jupiter/NNP itself/PRP is/VBZ often/RB called/VBN a/DT star/NN that/IN never/RB caught/VBN fire/NN ./."

- Needed as an initial processing step for a number of language technology applications
 - Answer extraction in Question Answering
 - Base step in identifying syntactic phrases for IR systems
 - Critical for word-sense disambiguation (WordNet apps)
 - Information extraction

- ...

Why is p-o-s tagging hard?

- Ambiguity
 - He will race/VB the car.
 - When will the race/NOUN end?
 - The boat floated/ VBN down the river sank.
- Average of ~2 parts of speech for each word
- The number of tags used by different systems varies a lot. Some systems use
 < 20 tags, while others use > 400.

Hard for Humans

- particle vs. preposition
 - He talked over the deal.
 - He talked over the telephone.
- past tense vs. past participle
 - The horse walked past the barn.
 - The horse walked past the barn fell.
- noun vs. adjective?
 - The executive decision.
- noun vs. present participle
 - Fishing can be fun.

To obtain gold standards for evaluation, annotators rely on a set of tagging guidelines.

From Ralph Grishman, NYU

Among easiest of NLP problems

- State-of-the-art methods achieve ~97% accuracy.
- Simple heuristics can go a long way.
 - ~90% accuracy just by choosing the most frequent tag for a word (MLE)
 - To improve reliability: need to use some of the local context.
- But defining the rules for special cases can be time-consuming, difficult, and prone to errors and omissions

Penn Treebank Tagset

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	**	Left quote	(' or '')
POS	Possessive ending	'S	"	Right quote	(' or ")
PP	Personal pronoun	I, you, he	(Left parenthesis	$([, (, \{, <)$
PP\$	Possessive pronoun	your, one's)	Right parenthesis	$([1,]), \hat{j}, >)$
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	(. ! ?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(:;)
RP	Particle	up, off			

Approaches

- 1. **rule-based**: involve a large database of hand-written disambiguation rules, e.g. that specify that an ambiguous word is a noun rather than a verb if it follows a determiner.
- 2. probabilistic: resolve tagging ambiguities by using a training corpus to compute the probability of a given word having a given tag in a given context.
 HMM tagger
- 3. **hybrid corpus-/rule-based**: E.g. transformationbased tagger (Brill tagger); learns symbolic rules based on a corpus.
- 4. **ensemble methods**: combine the results of multiple taggers.

Transformation-based learning

- Supervised machine learning technique
 - For acquiring simple default heuristics and rules for special cases
 - Rules are learned by iteratively collecting errors and generating rules to correct them.
- Requires a large (training) corpus of manually tagged text

TBL: high-level algorithm

Learns an ordered list of transformations (i.e. rewrite rules)

Rewrite rules

Rule

 Change *modal* to *noun*, if preceding word is a determiner

• Example

- Determiner: the, a, an, this, that ...
- Modals: can, will, should, would, may, might...followed by the main verb
- The/det can/modal rusted/verb ./.
- The/det can/noun rusted/verb ./.

Transformation-based learning

[Brill 1993]

Learning algorithm: greedy search

• Specify

- An initial state annotator
- Space of allowable transformations
- Objective function for comparing corpus to truth

• Algorithm

- Iterate
 - Try each possible transformation
 - Choose the one with the best score
 - Add to list of transformations
 - Update the training corpus
- Until no transformation improves performance

Transformation templates

• Change tag A to B when:

- preceding/following word is tagged Z
- word two before/after is tagged Z
- one of the two preceding/following words is tagged Z
- one of the three preceding/following words is tagged Z
- preceding word is tagged Z and following word is tagged W
- preceding/following word is tagged Z and word two before/after is tagged W

Generating transformations

- Apply the initial tagger and compile types of tagging errors. Each type of error is of the form:
 – <incorrect tag, desired tag,# of occurrences>
- For each error type, instantiate <u>all</u> templates to generate candidate transformations.
- Apply each candidate transformation to the corpus and count the number of corrections and errors that it produces. Save the transformation that yields the greatest improvement.
- Stop when no transformation can reduce the error rate by a predetermined threshold.

Example

- Suppose that the initial tagger mistags 159 words as verbs when they should have been nouns.
- Produces the error triple:
 verb, noun, 159>
- Suppose template #3 is instantiated as the rule: Change the tag from verb to noun if one of the two preceding words is tagged as a determiner.
- When this template is applied to the corpus, it corrects 98 of the 159 errors. But it also creates 18 new errors. Error reduction is 98-18=80.

Learned rules

- NN→VB if the previous tag is TO I wanted to/TO win/NN→VB a Subaru WRX...
- VBP→VB if one of the prev-3 tags is MD The food might/MD vanish/VBP→VB from sight.
- 3. NN→VB if one of prev-2 tags is MD I might/MD not reply/NN→VB
- 4. VB→NN if one of the prev-2 tags is DT
- 5. VBD→VBN if one of the prev-3 tags is VBZ
- 6. VBN→VBD if one of the previous tag is PRP

Tagging new text

- The resulting tagger consists of two phases:
 - Use the initial tagger to tag all the text
 - Apply each transformation, in order, to the corpus to correct some of the errors.
- The order of the transformations is very important!
 - For example, it is possible for a word's tag to change several times as different transformations are applied. In fact, a word's tag could thrash back and forth between the same two tags.

Evaluation

- Training: 600,000 words from the Penn Treebank WSJ corpus
- Testing: separate 150,000 words from PTB
- Assumes all possible tags for all test set words are known.
- 97.0% accuracy
- Tagger learned 378 rules.

Problems?

- Not lexicalized
 - Transformations are entirely tag-based; no specific words were used in the rules.
 - But certain phrases and lexicalized expressions can yield idiosyncratic tag sequences, so allowing the rules to look for specific words should help...
 - Add additional templates
 - E.g. when the preceding/following word is w...
 - Tagger achieves 97.2% accuracy
 - First 200 rules achieved 97.0%
 - First 100 rules achieved 96.8%
 - Learns 447 rules
- Unknown words

Transformation-based learning

- Part-of-speech tagging [Brill 1995; Ramshaw & Marcus 1994]
- Prepositional phrase attachment
 [Brill & Resnik 1995]
- Syntactic parsing [Brill 1994]
- Noun phrase chunking [Ramshaw & Marcus 1995, 1999]
- Context-sensitive spelling correction [Mangu & Brill 1997]
- Dialogue act tagging [Samuel et al. 1998]