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Part of speech tagging

“There are 10 parts of speech, and they are all 
troublesome.”

-Mark Twain

• POS tags are also known as word classes, 
morphological classes, or lexical tags.

• Typically much larger than Twain’s 10:

– Penn Treebank: 45

– Brown corpus: 87

– C7 tagset: 146

Part of speech tagging
• Assign the correct part of speech (word class) to each 

word/token in a document
“The/DT planet/NN Jupiter/NNP and/CC its/PRP moons/NNS 
are/VBP in/IN effect/NN a/DT mini-solar/JJ system/NN ,/, and/CC 
Jupiter/NNP itself/PRP is/VBZ often/RB called/VBN a/DT star/NN 
that/IN never/RB caught/VBN fire/NN ./.”

• Needed as an initial processing step for a number of 
language technology applications
– Answer extraction in Question Answering
– Base step in identifying syntactic phrases for IR systems
– Critical for word-sense disambiguation (WordNet apps)
– Information extraction
– …

Why is p-o-s tagging hard?
• Ambiguity

– He will race/VB the car.
– When will the race/NOUN end?
– The boat floated/VBD…

• Average of ~2 parts of speech for each 
word

• The number of tags used by different 
systems varies a lot.  Some systems use 
< 20 tags, while others use > 400.

VBN down the river sank.



Hard for Humans
• particle vs. preposition 

– He talked over the deal.
– He talked over the telephone.

• past tense vs. past participle
– The horse walked past the barn.
– The horse walked past the barn fell.

• noun vs. adjective?
– The executive decision.

• noun vs. present participle 
– Fishing can be fun.

From Ralph Grishman, NYU

To obtain gold standards for evaluation, annotators rely on a set of 
tagging guidelines.

Penn Treebank Tagset

Among easiest of NLP problems
• State-of-the-art methods achieve ~97% 

accuracy.
• Simple heuristics can go a long way.  

– ~90% accuracy just by choosing the most 
frequent tag for a word (MLE)

– To improve reliability: need to use some of the 
local context.

• But defining the rules for special cases can 
be time-consuming, difficult, and prone to 
errors and omissions

Approaches
1. rule-based: involve a large database of hand-written 

disambiguation rules, e.g. that specify that an 
ambiguous word is a noun rather than a verb if it 
follows a determiner.

2. probabilistic: resolve tagging ambiguities by using a 
training corpus to compute the probability of a given 
word having a given tag in a given context.
- HMM tagger

3. hybrid corpus-/rule-based: E.g. transformation-
based tagger (Brill tagger); learns symbolic rules 
based on a corpus.

4. ensemble methods: combine the results of multiple
taggers.



Transformation-based learning
• Supervised machine learning technique

– For acquiring simple default heuristics and 
rules for special cases

– Rules are learned by iteratively collecting errors 
and generating rules to correct them.

• Requires a large (training) corpus of 
manually tagged text

TBL: high-level algorithm

Learns an ordered list of transformations (i.e. rewrite 
rules)

Rewrite rules

• Rule
– Change modal to noun, if preceding word is a 

determiner
• Example

– Determiner: the, a, an, this, that …
– Modals: can, will, should, would, may, 

might…followed by the main verb
– The/det can/modal rusted/verb ./.
– The/det can/noun rusted/verb ./.

Transformation-based learning

initial state 
tagger

objective function: 
# correct- # incorrect

allowable transformations: 
based on words and tags 
in window surrounding 
the target word

[Brill 1993]



Learning algorithm: greedy search
• Specify

– An initial state annotator
– Space of allowable transformations
– Objective function for comparing corpus to truth

• Algorithm
– Iterate

• Try each possible transformation
• Choose the one with the best score
• Add to list of transformations
• Update the training corpus

– Until no transformation improves performance

Transformation templates
• Change tag A to B when:

– preceding/following word is tagged Z
– word two before/after is tagged Z
– one of the two preceding/following words is tagged Z
– one of the three preceding/following words is tagged Z
– preceding word is tagged Z and following word is tagged

W
– preceding/following word is tagged Z and word two

before/after is tagged W

Generating transformations
• Apply the initial tagger and compile types of tagging 

errors. Each type of error is of the form: 
– <incorrect tag, desired tag ,# of occurrences>

• For each error type, instantiate all templates to 
generate candidate transformations.

• Apply each candidate transformation to the corpus and 
count the number of corrections and errors that it 
produces.  Save the transformation that yields the 
greatest improvement.

• Stop when no transformation can reduce the error rate 
by a predetermined threshold.

Example
• Suppose that the initial tagger mistags 159 words as 

verbs when they should have been nouns. 

• Produces the error triple:
< verb, noun, 159>

• Suppose template #3 is instantiated as the rule:
Change the tag from verb to noun if one of the two 

preceding words is tagged as a determiner.

• When this template is applied to the corpus, it corrects 
98 of the 159 errors. But it also creates 18 new errors.  
Error reduction is 98-18=80.



Learned rules

1. NN VB if the previous tag is TO
I wanted to/TO win/NN VB  a Subaru WRX…

2. VBP VB if one of the prev-3 tags is MD
The food might/MD vanish/VBP VB  from sight.

3. NN VB if one of prev-2 tags is MD
I might/MD not reply/NN VB

4. VB NN if one of the prev-2 tags is DT
5. VBD VBN if one of the prev-3 tags is VBZ
6. VBN VBD if one of the previous tag is PRP

Tagging new text
• The resulting tagger consists of two phases:

– Use the initial tagger to tag all the text
– Apply each transformation, in order, to the corpus to 

correct some of the errors.

• The order of the transformations is very important!
– For example, it is possible for a word’s tag to change 

several times as different transformations are applied.  
In fact, a word’s tag could thrash back and forth 
between the same two tags.

Evaluation
• Training: 600,000 words from the Penn Treebank 

WSJ corpus
• Testing:  separate 150,000 words from PTB
• Assumes all possible tags for all test set words 

are known.
• 97.0% accuracy
• Tagger learned 378 rules.

Problems?
• Not lexicalized

– Transformations are entirely tag-based; no specific 
words were used in the rules.

– But certain phrases and lexicalized expressions can 
yield idiosyncratic tag sequences, so allowing the rules 
to look for specific words should help…

– Add additional templates
• E.g. when the preceding/following word is w…

– Tagger achieves 97.2% accuracy
• First 200 rules achieved 97.0%
• First 100 rules achieved 96.8%

– Learns 447 rules
• Unknown words



Transformation-based learning
• Part-of-speech tagging

[Brill 1995; Ramshaw & Marcus 1994]
• Prepositional phrase attachment 

[Brill & Resnik 1995]
• Syntactic parsing

[Brill 1994]
• Noun phrase chunking

[Ramshaw & Marcus 1995, 1999]
• Context-sensitive spelling correction

[Mangu & Brill 1997]
• Dialogue act tagging

[Samuel et al. 1998]


