
CS474 Natural Language Processing

- Partial parsing / Chunking
 - What is it?
 - Error-driven pruning of Treebank grammars
 - Comparison with TBL

Partial parsing

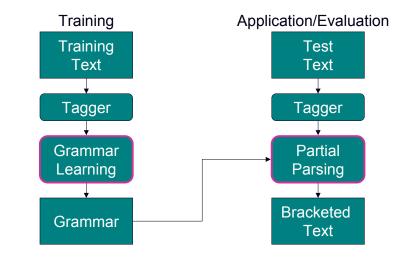
Why partial parsing?

- Fast
- Supports a number of large-scale NLP tasks
 - Information Extraction
 - Phrase identification for Information Retrieval
 - Question Answering

Base noun phrases

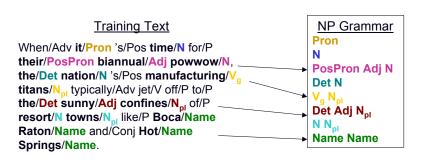
Non-recursive noun phrases (smallest NPs)

When [it] 's [time] for [their biannual powwow], [the nation] 's [manufacturing titans] typically jet off to [the sunny confines] of [resort towns] like [Boca Raton] and [Hot Springs].


Inductive ML algorithm

• Simple

base NP = any string having the same part-ofspeech tag sequence as a base NP from the training corpus


- Combines components of existing techniques
 - Charniak (1996)
 - Brill (1995)
- Achieves surprisingly high accuracies

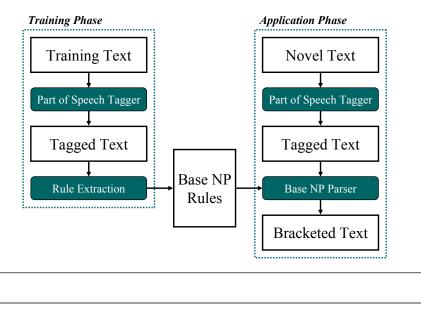
Partial parsing framework


Rule extraction

rule = sequence of part-of-speech tags

Partial parsing bracketer

- Left-to-right
- Longest-match

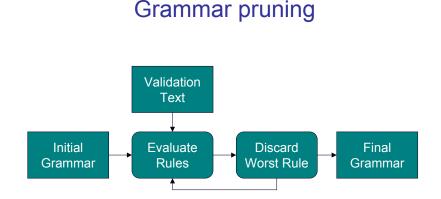


Association/Name of/P Manufacturers/Name settled/V_p on/P the/Det city/N of/P Indianapolis/Name for/P its/PosPron fall/N board/N meeting/N.

Parser (bracketer)

```
\begin{array}{l} Bracket(w_1,\ldots,\,w_n):\\ assign p-o-s tags \ t_1,\ldots,\,t_n \ to \ words \ w_1,\ldots,\,w_n\\ i=1\\ while \ i\leq n \ do\\ \{r_1,\ldots,\,r_k\} = Matches(w_i,\ldots,\,w_n)\\ r = longest(r_1,\ldots,\,r_k)\\ make \ new \ NP \ from \ w_i,\ldots,\,w_{i+|r|-1}\\ i=i+|r| \end{array}
```

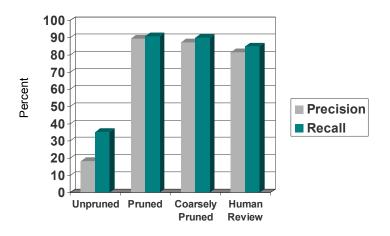
Overview of the method



Poorly performing rules

- Sources of bad rules
 - errors in training data
 - errors in part-of-speech tagging
 - irregular & ambiguous constructs

...manufacturing/V_g titans/N_{pl}...


...the/Det executives/N_{pl} began/V_p boarding/V_g buses/N_{pl}...

- score(r) = correct(r) - errors(r)

- stop when worst score is positive

Results

Results vs. TBL on R&M corpus

	TBL results	Pierce & Cardie [98]	Difference
w/lexical templates	93.1P/93.5R		-3.7P/-2.6R
w/o lexical templates	90.5P/90.7R	89.4P/90.9R	-0.9P/+0.2R

Advantages of the approach

- Good performance
- Simple
 - Easy to understand, implement
 - Produces intelligible grammar rules
 - Easy to update for new text genre
- Efficient
 - Fastest bracketing procedure
- State of the art
 - ~94% P/R for NP, VP, PP chunks
 - Using ensembles of SVM's (Kudo & Matsumoto, 2000) and Winnow as employed in Zhang et al. (2001)