CS474 Intro to Natural Language Processing

Question Answering

Question answering

- Overview and task definition
- History
- Open-domain question answering
- Basic system architecture
- Predictive indexing methods
 - Slides based on those of Jamie Callan, CMU
- Pattern-matching methods
- Advanced techniques

Indexing with predictive annotation

- Some answers belong to well-defined semantic classes
 - People, places, monetary amounts, telephone numbers, addresses, organizations
- Predictive annotation: index a document with "concepts" or "features" that are expected to be useful in (many) queries
 - E.g. people names, location names, addresses, etc.
- Add additional operators for use in queries
 - E.g. Where does Ellen Vorhees work? "Ellen Vorhees" NEAR/10 *organization

Predictive annotation

In the early part of this century, the only means of transportation for travelers and mail between <LOCATION> Europe </LOCATION> and <LOCATION> North America </LOCATION> was by passenger steamship. By <DATE> 1907 </DATE>, the <COMPANY> Cunard Steamship Company </COMPANY> introduced the largest and fastest steamers in the <LOCATION> North Atlantic </LOCATION> service: the <NAME> Lusitania </NAME> and the <NAME> Mauritania </NAME>. Each had a gross tonnage of <WEIGHT> 31,000 tons </WEIGHT> and a maximum speed of <SPEED> 26 knots </SPEED>.

– From K. Felkins, H.P. Leighly, Jr., and A. Jankovic. "The Royal Mail Ship Titanic: Did a Metallurgical Failure Cause a Night to Remember?" *JOM*, 50 (1), 1998, pp. 12-18.

© 2002, Janie Calla

Predictive annotation

• How is annotated text stored in the index?

In the early part of this century, the only means of transportation for travelers and mail between **\$LOCATION**, **Europe>** and **\$LOCATION North> \$LOCATION America>** was by passenger steamship. By **\$DATE 1907>**, the **\$COMPANY**, **Cunard> \$COMPANY**, **Steamship> \$COMPANY**, **Company>** introduced the largest and fastest steamers in the **\$LOCATION**, **North> \$LOCATION**, **Atlantic>** service: the **\$NAME**, **Lusitania>** and the **\$NAME**, **Mauritania>**. Each had a gross tonnage of **\$WEIGHT**, **31,000> \$WEIGHT**, tons> and a maximum speed of **\$SPEED**, **26> \$SPEED**, knots>.

- Treat <\$QA-token, term> as meaning that \$QA-token and term occur at the same location in the text
 - Or use phrase indexing approach to index as a single item

Issues for predictive annotation

- What makes a good QA-token?
 - Question that would use the token
 - Can be recognized with high reliability (high precision)
 - Occurs frequently enough to be worth the effort
- How do you want the system to make use of the QA-tokens?
 - Filtering step?
 - Transform original question into an ad-hoc retrieval question that incorporates QA-tokens and proximity operators?
- Common approaches to recognizing QA-tokens
 - Tables, lists, dictionaries
 - Heuristics
 - Hidden Markov models

Advantages and disadvantages

- + Most of the computational cost occurs during indexing
 - Allows use of more sophisticated methods
- + Annotator has access to complete text of document
 - Important for recognizing some types of features
- Must know ahead of time which types of features/concepts are likely to be important
- Increases size of index considerably
 - E.g. by an order of magnitude if many features
- Used (in varying amounts) by almost all open-domain Q/A systems

Question answering

- Overview and task definition
- History
- Open-domain question answering
- Basic system architecture
- Predictive indexing methods
- Pattern-matching methods
 - Slides based on those of Jamie Callan, CMU
- Advanced techniques

Simple pattern-based QA

- Observation: there are many questions...but fewer types of questions
- Each type of question can be associated with
 - Expectations about answer string characteristics
 - Strategies for retrieving documents that might have answers
 - Rules for identifying answer strings in documents

Example

• Who is the President of Cornell?

- Expectation: answer string contains a person name
 - Named entity identification
- Search query: "president Cornell *PersonName"
- Rule: "*PersonName, President of Cornell"
 - Matches "...Hunter Rawlings, President of Cornell"
 - Answer = "Hunter Rawlings"

Question analysis

- Input: the question
- Output
 - Search query
 - Answer expectations
 - Extraction strategy
- Requires
 - Identifying named entities
 - Categorizing the question
 - Matching question parts to templates
- Method: pattern-matching
 - Analysis patterns created manually these days...

Question analysis example

- "Who is Elvis?"
 - Question type: "who"
 - Named-entity tagging: "Who is <personname>Elvis</person-name>"
 - Analysis pattern: if question type = "who" and question contains <person-name> then
 - Search query doesn't need to contain a *PersonName operator
 - Desired answer probably is a description
 - Likely answer extraction patterns
 - "Elvis, the X"
 - » "...Elvis, the king of rock and roll..."
 - "the X Elvis"
 - » "the legendary entertainer Elvis"

Question analysis

Frequency of question types on an Internet search engine

- -42% what
- -21% where
- -20% who
- -8% when
- 8% why
- -2% which
- -0% how

- Relative difficulty of question types
 - What is difficult
 - What time...
 - What country...
 - Where is easy
 - Who is easy
 - When is easy
 - Why is hard
 - Which is hard
 - How is hard

Example: What is Jupiter?

- 1. What We Will Learn from Galileo
- 2. The Nature of Things: Jupiter's shockwaves—How a comet's bombardment has sparked activity on Earth
- 3. Jupiter-Bound Spacecraft Visits Earth on 6-Year Journey
- 4. STAR OF THE MAGI THEORIES ECLIPSED?
- 5. Marketing & Media: Hearst, Burda to Scrap New Astrology Magazine
- 6. Greece, Italy Conflict On Cause Of Ship Crash That Kills 2, Injures 54
- 7. Interplanetary Spacecraft To `Visit` Earth With LaserGraphic
- 8. A List of Events During NASA's Galileo Mission to Jupiter
- 9. SHUTTLE ALOFT, SENDS GALILEO ON 6-YEAR VOYAGE TO JUPITER
- 10. Rebuilt Galileo Probe readied For Long Voyage To Jupiter

Answer extraction

- Select highly ranked sentences from highly ranked documents
- Perform named-entity tagging (or extract from index) and perform part of speech tagging
 - "The/DT planet/NN <location>Jupiter/NNP</location> and/CC its/PRP moons/NNS are/VBP in/IN effect/NN a/DT mini-solar/JJ system/NN ,/, and/CC <location>Jupiter/NNP</location> itself/PRP is/VBZ often/RB called/VBN a/DT star/NN that/IN never/RB caught/VBN fire/NN ./."
- Apply extraction patterns
 - the/DT X Y, Y=Jupiter -> the <u>planet</u> Jupiter -> "planet"

Simple pattern-based Q/A: assessment

- Extremely effective when
 - Question patterns are predictable
 - Fairly "few" patterns cover the most likely questions
 - Could be several hundred
 - Not much variation in vocabulary
 - Simple word matching works
 - The corpus is huge (e.g., Web)
 - Odds of finding an answer document that matches the vocabulary and answer extraction rule improves
- Somewhat labor intensive
 - Patterns are created and tested manually

Common problem: matching questions to answers

- Document word order isn't exactly what was expected
- Solution: "soft matching" of answer patterns to document text
 - Approach: use distance-based answer selection when no rule matches
 - E.g. for "What is Hunter Rawlings' address?"
 - Use the address <u>nearest to</u> the words "Hunter Rawlings"
 - User the address in the <u>same sentence</u> as "Hunter Rawlings"

Common problem: matching questions to answers

- Answer vocabulary doesn't exactly match question vocabulary
- Solution: bridge the vocabulary mismatch
 - Approach: use WordNet to identify simple relationships
 - "astronaut" is a type of "person"
 - "astronaut" and "cosmonaut" are synonyms

Common problem: improving the set of retrieved documents

- Sometimes the IR system can't find <u>any</u> documents that have answers (even though the right documents are in the corpus)
- Solution: get a broader set of documents
 - Approach: if answer extractor fails to find an answer, kick the question back to the search engine with instructions to widen the search
 - Assumes answer extractors can tell when they fail
 - Approach: use a variety of retrieval strategies to retrieve documents
 - E.g., all words within one sentence, then all words within one paragraph, then within same document, ...
 - E.g. add synonyms to query or do query expansion
 - Simple, but much higher computational expense

Common problem: improving answer extraction patterns

- Word sequence patterns have limited power
- Solution: create patterns that use syntactic information
 - Partial syntactic parsing of documents
 - Is this noun the subject or the object of the sentence?
 - Allows more complex patterns
 - Question: "Who shot Kennedy?"
 - "Who" implies a person that should be subject of answer sentence/clause
 - "Kennedy" should be direct object of answer
 - Pattern: <subject> shot Kennedy
 - Matching text: "Oswald shot Kennedy"

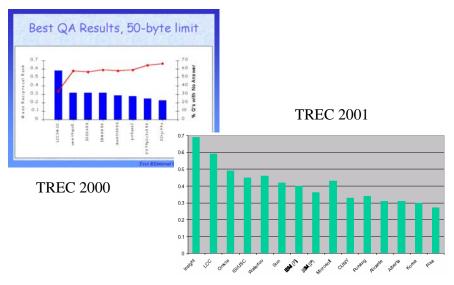
Common problem: selecting/ranking the answer

- Multiple answer candidates
- Solutions
 - Features used to represent answer candidates
 - Frequency
 - Distance to question words
 - Location in answer passage(s)
 - ...
 - Selection functions
 - Created manually
 - Learned from training data

Question answering

- Overview and task definition
- History
- Open-domain question answering
- Basic system architecture
- Predictive indexing methods
- Pattern-matching methods
- Advanced techniques
 - Slides based on Pasca & Harabagiu (SIGIR 2001) and the slides of J. Callan and K. Czuba, CMU

SMU/LCC system

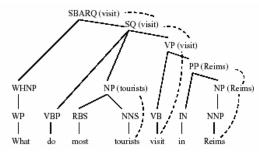


Multi-strategy approach

- State of the art in QA is the SMU/LCC Falcon system
 - Employs informed use of standard IR techniques
 - Use of broad ontology (extended WordNet)
 - Lots of NLP
 - Answer verification
- Similar to most other systems in architecture except for
 - Much more careful tuning of algorithms and resources
 - More sophisticated control of IR and NLP
 - Feedback loops

Question analysis

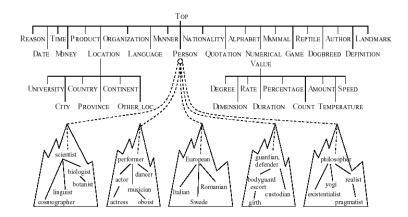
- Parsing and named entity recognition
- Expected answer type determined by parsing



• Exceptions for "special cases"

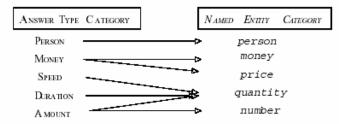
(Q-P1): What {is|are} < phrase_to_define>? (Q-P2): What is the definition of < phrase_to_define>? (Q-P3): Who {is|was|are|were} < person_name(s)>?

Expected answer types



Expected answer types

• Answer types are mapped to named-entity categories that can be recognized in text



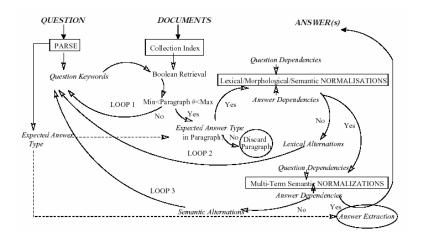
• Answer types drive processing of paragraphs

- Passages need to contain the expected answer type

Paragraph retrieval

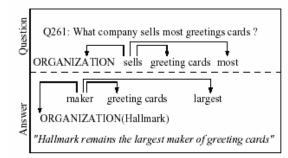
- Boolean retrieval with loops
 - Different from multiple queries in that system only uses additional queries when necessary
 - Fewer candidates for analysis components to consider
- Loop 1: query keyword loop
 - Keywords added/dropped to make query more/less specific
- Loop 2: keyword alternations
 - Try morphological variants and synonyms
- Loop 3: semantic alternations
 - Try semantic alternatives

Feedback loops



Answer verification

- Parse passages to create a dependency tree among words
- Attempt to unify logical forms of question and answer text



Assessment

- Strengths
 - Controlled use of IR system
 - Query expansion via lexical and semantic equivalents
 - Believed to be the major power of the system
 - Tailored resources (see paper)
 - WordNet, parser, NE identifier, etc.
 - Answer verification
 - Initially thought to be the key component of the system
 - Now...not so clear
- Weaknesses
 - Complex system, contribution of each component unclear