Non-Linear Problems

Problem:
- some tasks have non-linear structure
- no hyperplane is sufficiently accurate
How can SVMs learn non-linear classification rules?

Example

- Input Space: \(x = (x_1, x_2) \) (2 attributes)
- Feature Space: \(\Phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, 1) \) (6 attributes)

Extending the Hypothesis Space

Idea: add more features

- Kernels can make high-dimensional spaces tractable
- Kernels can make non-vectorial data tractable
- Transform a linear learner into a non-linear learner

Example:

- The separating hyperplane in feature space is degree two polynomial in input space.

Dual (Batch) Perceptron Algorithm

Inputs: \(X = \{(x_m, y_m)\}, \quad y_m \in \{-1, 1\}, \quad m \in [1, 2, \ldots] \)

Dual Algorithm:
- \(k \in [1, m] \) : \(\alpha_k = 0 \)
- \(\epsilon = \frac{\alpha}{\sum \alpha_k} \)
- \(\alpha_{m+1} = -1 \)

- \(\text{FOR} \ m = 1 \ to \ n \)
- \(\text{IF} \ y_m (\sum \alpha_k y_k x_m \cdot x_k) \leq 0 \)
- \(\alpha_m \leftarrow \alpha_m + 1 \)
- ENDIF
- ENDFOR

- until \(\epsilon \) iterations reached

Primal Algorithm:

- \(\text{FOR} \ m = 1 \ to \ n \)
- \(\text{IF} \ y_m (\sum \alpha_k y_k x_m \cdot x_k) \leq 0 \)
- \(\alpha_m \leftarrow \alpha_m + 1 \)
- ENDIF
- ENDFOR

- until \(\epsilon \) iterations reached
Kernels

Problem: Very many Parameters! Polynomials of degree \(p \) over \(N \) attributes in input space lead to attributes in feature space!

Solution: [Boser et al.] The dual OP depends only on inner products \(\Rightarrow \) Kernel Functions

\[
K(\boldsymbol{x}, \boldsymbol{y}) = \mathbf{\Phi}(\boldsymbol{x}) \cdot \mathbf{\Phi}(\boldsymbol{y})
\]

Example: For \(\mathbf{\phi}(\boldsymbol{x}) = (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, x_1x_2, 1) \) calculating \(K(\boldsymbol{x}, \boldsymbol{y}) = [\boldsymbol{x} \cdot \boldsymbol{y} + 1]^2 \) computes inner product in feature space.

\(\Rightarrow \) no need to represent feature space explicitly.

Properties of SVMs with Kernels

- **Expressiveness**
 - Can represent any boolean function (for appropriate choice of kernel)
 - Can represent any sufficiently "smooth" function to arbitrary accuracy (for appropriate choice of kernel)

- **Computational**
 - Objective function has no local optima (only one global)
 - Independent of dimensionality of feature space

- **Design decisions**
 - Kernel type and parameters
 - Value of \(C \)

Examples of Kernels

- **Polynomial**
 \[
 K(\boldsymbol{x}, \boldsymbol{y}) = (\boldsymbol{x} \cdot \boldsymbol{y} + 1)^d
 \]

- **Radial Basis Function**
 \[
 K(\boldsymbol{x}, \boldsymbol{y}) = \exp(-\|\boldsymbol{x} - \boldsymbol{y}\|^2)
 \]

Kernels for Non-Vectorial Data

- **Applications with Non-Vectorial Input Data**
 - Classify non-vectorial objects
 - Protein classification (\(x \) is string of amino acids)
 - Drug activity prediction (\(x \) is molecule structure)
 - Information extraction (\(x \) is sentence of words)
 - Etc.

- **Applications with Non-Vectorial Output Data**
 - Predict non-vectorial objects
 - Natural Language Parsing (\(y \) is parse tree)
 - Noun-Phrase Co-reference Resolution (\(y \) is clustering)
 - Search engines (\(y \) is ranking)

\(\Rightarrow \) Kernels can compute inner products efficiently!