What is Learning?

- Examples
 - Riding a bike (motor skills)
 - Telephone number (memorizing)
 - Read textbook (memorizing and operationalizing rules)
 - Playing backgammon (strategy)
 - Develop scientific theory (abstraction)
 - Language
 - Recognize fraudulent credit card transactions
 - Etc.

(One) Definition of Learning

Definition [Mitchell]:
A computer program is said to learn from
- experience E with respect to some class of
- tasks T and
- performance measure P,
if its performance at tasks in T, as measured by P,
 improves with experience E.

Examples

- **Spam Filtering**
 - T: Classify emails HAM / SPAM
 - E: Examples (e₁,HAM),(e₂,SPAM),(e₃,HAM),(e₄,SPAM), ...
 - P: Prob. of error on new emails

- **Personalized Retrieval**
 - T: find documents the user wants for query
 - E: watch person use Google (queries / clicks)
 - P: # relevant docs in top 10

- **Play Checkers**
 - T: Play checkers
 - E: games against self
 - P: percentage wins

How can an Agent Learn?

Learning strategies and settings
- rote learning
- learning from instruction
- learning by analogy
- learning from observation and discovery
- learning from examples

- Carbonell, Michalski & Mitchell.

Inductive Learning / Concept Learning

- **Task:**
 - Learn (to imitate) a function f: X \rightarrow Y

- **Training Examples:**
 - Learning algorithm is given the correct value of the
 function for particular inputs \textit{training examples}
 - An example is a pair (x, f(x)), where x is the input
 and f(x) is the output of the function applied to x.

- **Goal:**
 - Learn a function h: X \rightarrow Y that approximates
 f: X \rightarrow Y as well as possible.
Concept Learning Example

<table>
<thead>
<tr>
<th>Food</th>
<th>Chat</th>
<th>Fast</th>
<th>Price</th>
<th>Bar</th>
<th>BigTip</th>
</tr>
</thead>
<tbody>
<tr>
<td>great</td>
<td>yes</td>
<td>yes</td>
<td>normal</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>great</td>
<td>no</td>
<td>yes</td>
<td>normal</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>mediocre</td>
<td>yes</td>
<td>no</td>
<td>high</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>great</td>
<td>yes</td>
<td>yes</td>
<td>normal</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Instance Space X: Set of all possible objects described by attributes (often called features).

Target Function f: Mapping from Attributes to Target Feature (often called label) \(f \) is unknown.

Hypothesis Space H: Set of all classification rules \(h \) we allow.

Training Data D: Set of instances labeled with Target Feature

Classification and Regression Tasks

Naming:
- If \(Y \) is a the real numbers, then called “regression”.
- If \(Y \) is a discrete set, then called “classification”.

Examples:
- **Steering a vehicle:** image in windshield \(\rightarrow \) direction to turn the wheel (how far)
- **Medical diagnosis:** patient symptoms \(\rightarrow \) has disease / does not have disease
- **Forensic hair comparison:** image of two hairs \(\rightarrow \) match or not
- **Stock market prediction:** closing price of last few days \(\rightarrow \) market will go up or down tomorrow (how much)
- **Noun phrase coreference:** description of two noun phrases in a document \(\rightarrow \) do they refer to the same real world entity

Inductive Learning Algorithm

- **Task:**
 - Given: collection of examples
 - Return: a function \(h \) (hypothesis) that approximates \(f \)

- **Inductive Learning Hypothesis:**
 - Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over any other unobserved examples.

- **Assumptions of Inductive Learning:**
 - The training sample represents the population
 - The input features permit discrimination

Inductive Learning Setting

Task:
- Learner induces a general rule \(h \) from a set of observed examples that classifies new examples accurately.

Instance-Based Learning

- **Idea:**
 - Similar examples have similar label.
 - Classify new examples like similar training examples.

- **Algorithm:**
 - Given some new example \(x \) for which we need to predict its class \(y \)
 - Find most similar training examples
 - Classify \(x \) “like” these most similar examples

- **Questions:**
 - How to determine similarity?
 - How many similar training examples to consider?
 - How to resolve inconsistencies among the training examples?

K-Nearest Neighbor (KNN)

- **Given:** Training data \(\{(x_1, y_1), \ldots, (x_m, y_m)\} \)
 - Attribute vectors: \(x_i \in \mathbb{X} \)
 - Target attribute: \(y \in \{-1, +1\} \)

- **Parameter:**
 - Similarity function: \(R : \mathbb{X} \times \mathbb{X} \rightarrow \mathbb{R} \)
 - Number of nearest neighbors to consider: \(k \)

- **Prediction rule**
 - New example \(x' \) :
 - K-nearest neighbors: \(k \) training examples with largest \(R(x', x_i) \)

 \[
 h(x') = \arg \max_{y \in \{-1, +1\}} \left\{ \sum_{i=1}^{k} 1_{x_i \in \text{neighbors}(x')} \right\}
 \]
KNN Example

<table>
<thead>
<tr>
<th>Food</th>
<th>Chat</th>
<th>Fast</th>
<th>Price</th>
<th>Bar</th>
<th>BigTip</th>
</tr>
</thead>
<tbody>
<tr>
<td>great</td>
<td>yes</td>
<td>yes</td>
<td>normal</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>great</td>
<td>no</td>
<td>yes</td>
<td>normal</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>mediocre</td>
<td>yes</td>
<td>no</td>
<td>high</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>great</td>
<td>yes</td>
<td>yes</td>
<td>normal</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

• New examples:
 – (great, no, no, normal, no)
 – (mediocre, yes, no, normal, no)

Types of Attributes

• Symbolic (nominal)
 – EyeColor {brown, blue, green}
• Boolean
 – anemic {TRUE,FALSE}
• Numeric
 – Integer: age [0, 105]
 – Real: length
• Structural
 – Natural language sentence: parse tree
 – Protein: sequence of amino acids

KNN for Real-Valued Attributes

• Similarity Functions:
 – Gaussian: $d(x, x') = e^{-d(x, x')^2}$
 – Cosine: $d(x, x') = \arccos(x \cdot x')$

Selecting the Number of Neighbors

• Increase k:
 – Makes KNN less sensitive to noise
• Decrease k:
 – Allows capturing finer structure of space
 ➤ Pick k not too large, but not too small (depends on data)

Example: Effect of k

Advantages and Disadvantages of KNN

• Simple algorithm
• Need similarity measure and attributes that “match” target function.
• For large training sets, requires large memory is slow when making a prediction.
• Prediction accuracy can quickly degrade when number of attributes grows.
<table>
<thead>
<tr>
<th>Curse-of-Dimensionality</th>
<th>Remarks on KNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Prediction accuracy can quickly degrade when number of attributes grows.</td>
<td>• Memorizes all observed instances and their class</td>
</tr>
<tr>
<td>– Irrelevant attributes easily “swamp” information from relevant attributes</td>
<td>• Is this rote learning?</td>
</tr>
<tr>
<td>[K(x_i, y) \sim \frac{1}{(1 + d(x, y))^p}]</td>
<td>• Is this really learning?</td>
</tr>
<tr>
<td>[\text{When many irrelevant attributes, similarity measure}]</td>
<td>• When does the induction take place?</td>
</tr>
<tr>
<td>becomes less reliable</td>
<td></td>
</tr>
<tr>
<td>• Remedy</td>
<td></td>
</tr>
<tr>
<td>– Try to remove irrelevant attributes in pre-processing step</td>
<td></td>
</tr>
<tr>
<td>– Weight attributes differently</td>
<td></td>
</tr>
<tr>
<td>– Increase k (but not too much)</td>
<td></td>
</tr>
</tbody>
</table>