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Paper Critique #5

One of the strengths of the paper is the careful design of experiment and calculation of the results (at least for the first experiment). Authors average the results over multiple runs of randomly drawn test set for the first experiment and compute standard deviation in addition to the average. The results are compared historically with previously suggested algorithms.

One of the contributions of the authors is the creation of a large data set that can be used for evaluation of WSD algorithms. While being a useful tool, a few aspects of the new collection are questionable. First, the collection is annotated on the most frequently occurring and most ambiguous words in English. It does not become clear from the paper what qualifies as the most ambiguous words, but it appears that the most ambiguous words are the ones that have the most different meanings according to WordNet. It is not clear that the words with the most WordNet senses are the most ambiguous, since some senses may not even occur in the corpus. 

Second, it appears somewhat unfair to evaluate algorithms only on the most frequently occurring words, since that means that more training data for the classifiers for those words is available. That puts at disadvantage algorithms that can learn classifications better from small number of examples.

Third, the estimate of 10-20% error seems somewhat arbitrary. Authors give no description of how this estimate was reached. It appears that agreement of 57% of the data is not an impressive result. However, I am not familiar with typical annotator agreement results for sense assignment, so I cannot judge the result. Nevertheless, a small subset of the data could have been overlapped between annotators to study agreement between different annotators, as high agreement between annotators should increase our confidence in the quality of the annotations used in the evaluation.

Lastly, authors talk about evaluating the algorithm on two separate test sets, a Brown corpus and a WSJ sets. It is not clear from the paper, but it appears that the algorithm has been trained on the entire corpus. It would be interesting to also evaluate a version trained only in the BC portion on the BC corpus and similarly for WSJ. It is not clear how the two test sets were selected and why multiple runs were not used and the results averaged as in the first experiment. 

The algorithm that the paper proposes appears to be novel in its application to WSD and shows impressive results. A few steps in the design of the algorithm can be further elaborated on in future work. LEXAS uses a POS tagger and the morphological analyzer of WordNet. It is not clear how the performance of these two components affect the performance of the algorithm. While the authors make a good case for the POS tagger that typically achieves accuracy of about 96%, no such case is made for the morphological analyzer. Even in the case of good performance of the analyzer, an evaluation of the effect of the performance of the two external components on the performance of LEXAS might be useful as it can guide where efforts for further improving the algorithm should be concentrated.

In selecting the features constituting the frequently co-occurring words, the local collocation, and the verb-object syntactic relation, authors select based on conditional probability. From the description of the algorithm, it appears that a more desirable measure could be mutual information, since sometimes words with slightly lower conditional probability may be a good predictor of the sense of the word under consideration. For instance, a word can be a good indicator for senses 1 and 2 and indicate near 0 likelihood for senses 3 to n. Conditional probability will ignore such a word as a good feature, while in reality including such a feature might be useful.

Additionally, the choice of the nine features for local collocations appears to be arbitrary. Authors do not justify the particular choice of the nine features and not let’s say –3  : 3 for instance. A more reasonable approach would be to consider all combinations of features up to a given length and estimate from the training set which features are the most useful ones.

In future work authors may consider implementing a higher-precision method for determining the verb-object syntactic relation. An approach using a syntactic parser may enable a higher precision and allow different syntactic relations to be considered. Additionally, syntactic parsing technique could allow determining the verb-object relation when the noun under consideration is not the first argument of the verb.

Finally, the algorithm used for classification is k nearest neighbors with k = 1. It would be interesting to evaluate the same algorithm with different values for k and compare the results. Furthermore, it would be interesting to compare the performance of KNN with other algorithms known to often outperform KNN such as Naïve Baise and SVM. The problem at hand can be thought of as multi-label classification.
