Overview of Machine Learning

Can computers learn?
- memorizing times tables
- playing tennis
- reading
- taking advice

What is learning? Any algorithm that lets the system perform a task more effectively or more efficiently than before.

Can Computers Learn?
- Learning a set of new facts
- Learning HOW to do something
- Improving ability of something already learned

Some Types of ML Algorithms
- rote learning
- learning from instruction
- learning by analogy
- learning from observation and discovery
- learning from examples

–Carbonell, Michalski & Mitchell.

Inductive Learning or Concept Learning

All learning can be seen as learning the representation of a function.

Inductive learning: system tries to induce a “general rule” from a set of observed instances.

Supervised learning: learning algorithm is given the correct value of the function for particular inputs, and changes its representation of the function to try to match the information provided by the feedback.

An **example** is a pair \((x, f(x))\), where \(x\) is the input and \(f(x)\) is the output of the function applied to \(x\).
Example: Work or Play?

<table>
<thead>
<tr>
<th>outlook</th>
<th>temp</th>
<th>humidity</th>
<th>windy</th>
<th>Saturday plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>false</td>
<td>cs472</td>
</tr>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>true</td>
<td>cs472</td>
</tr>
<tr>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>false</td>
<td>soccer</td>
</tr>
<tr>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>false</td>
<td>soccer</td>
</tr>
<tr>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>false</td>
<td>soccer</td>
</tr>
<tr>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>true</td>
<td>cs472</td>
</tr>
</tbody>
</table>

- Each input observation, x, is a Saturday, described by the features outlook, temp, humidity, windy.
- The target concept, f: day $\rightarrow \{soccer, cs472\}$

Classification Tasks

Learning a discrete-valued function is called classification.

Steering a vehicle: image in windshield \rightarrow direction to turn the wheel.

Medical diagnosis: patient symptoms \rightarrow has disease/ does not have disease.

Forensic hair comparison: image of two hairs \rightarrow match or not.

Stock market prediction: closing price of last few days \rightarrow market will go up or down tomorrow.

Noun phrase coreference: description of two noun phrases in a document \rightarrow do they refer to the same real world entity.

Building Classifiers

1. Learn about the domain, write a program that maps inputs to outputs (e.g., rule-based medical diagnosis systems).

2. Automate the process using data in the form of observations $(x_i, f(x_i))$.

 - cholesterol=170,bp=170/95,... \rightarrow heart disease = N
 - cholesterol=250,bp=170/95,... \rightarrow heart disease = Y

Inductive Learning

Given: collection of examples

Return: a function h (hypothesis) that approximates f (target concept).

OR

Given: a universe of objects described by a collection of attributes each labeled with one of a discrete number of classes.

Return: a classification “rule” that can determine the class of any object from its attributes’ values.
Inductive learning hypothesis: any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over any other unobserved examples.

Assumptions for Inductive Learning Algorithms:
- The training sample represents the population
- The input features permit discrimination

k-nearest neighbor
Also called instance-based Learning; case-based learning.

A: set of features/attributes, A_1, \ldots, A_n that describe the problem

$x = x_{a_1}x_{a_2} \ldots x_{a_n}$, where x_{a_i} is the value of feature A_i in example x

$f(x) : x \rightarrow c \in C = \{c_1, \ldots, c_m\}$

The case base is the set of training examples $(x_1, f(x_1)), (x_2, f(x_2)), \ldots$

k-nearest neighbor algorithm for computing $f(x)$:

1. Compare new example, x, to each case, y, in the case base and calculate for each pair:

\[
sim(x, y) = \sum_{i=1}^{n} \text{match}(x_{a_i}, y_{a_i})
\]

where $\text{match}(a, b)$ is a function that returns 1 if a and b are equal and 0 otherwise.

2. Let $R =$ the top k cases ranked according to \sim

3. Return as $f(x)$ the class, c, that wins the majority vote among $f(R_1), f(R_2), \ldots, f(R_k)$. Handle ties randomly.
Types of Attributes

1. Symbolic (nominal) – \(E_{yeColor} \in \{brown, blue, green\}\)
2. Boolean – \(anemic \in \{TRUE, FALSE\}\)
3. Numeric (Integer, Real) – \(age \in [0, 105]\)

How do we compute the similarity between \(E_{yeColor} = brown\) and \(E_{yeColor} = green\)?

Example of case retrieval for k-nn

<table>
<thead>
<tr>
<th>outlook</th>
<th>temp</th>
<th>humidity</th>
<th>windy</th>
<th>plan</th>
<th>sim</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>false</td>
<td>cs472</td>
<td></td>
</tr>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>true</td>
<td>cs472</td>
<td></td>
</tr>
<tr>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>false</td>
<td>soccer</td>
<td></td>
</tr>
<tr>
<td>overcast</td>
<td>mild</td>
<td>normal</td>
<td>true</td>
<td>football</td>
<td></td>
</tr>
<tr>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>false</td>
<td>soccer</td>
<td></td>
</tr>
<tr>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>false</td>
<td>soccer</td>
<td></td>
</tr>
</tbody>
</table>

\(A: outlook, temp, humidity, windy\)
\(k = 1, C = \{soccer, cs472 football\}\)
\(test case: X = sunny cool high false\)

\(k\)-Nearest Neighbor Algorithm

1. Memorizes all observed instances and their class
2. Is this rote learning?
3. Is this really learning?
4. When does the induction take place?

Advantages and Disadvantages

What constitutes the concept description?
Poisonous Mushroom Decision Tree

Concept description: decision trees

Another Poisonous Mushroom Decision Tree?

Finding a Decision Tree

Goal: find the best decision tree
where *best* means the smallest tree consistent with data

Ockham’s Razor: all other things being equal, choose the simplest

Problem: goal is computationally intractable

Solution: use heuristic search

Top Down Induction of Decision Trees

If all instances from same class
then tree is leaf with that class name
else
pick test for decision node
partition instances by test outcome
construct one branch for each possible outcome
build subtrees recursively

Slide CS472 – Machine Learning 17

Slide CS472 – Machine Learning 18

Slide CS472 – Machine Learning 19

Slide CS472 – Machine Learning 20
A Concept Learning Task

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temp</th>
<th>Humidity</th>
<th>Wind</th>
<th>Play-Tennis?</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>

Characteristics of Tests

Let $|P| = 20$, $|N| = 20$

A Boolean test splits the data into two subsets, U_1 and U_2

The best test: $U_1 = P$ and $U_2 = N$

The worst test: $U_1 = \frac{1}{2}P + \frac{1}{2}N$ and $U_2 = \frac{1}{2}P + \frac{1}{2}N$

Information Gain

average disorder =

$$\sum_{b=1}^{n\text{branches}} \frac{n_b}{n_t} \times \text{Disorder}(b)$$

average disorder =

$$\sum_{b=1}^{n\text{branches}} \frac{n_b}{n_t} \times \left(\sum_{c}^{n\text{classes}} \frac{n_{bc}}{n_b} \log_2 \left(\frac{n_{bc}}{n_b} \right) \right)$$

n_b is the number of instances in branch b

n_t is the total number of instances

n_{bc} is the number of instances in branch b of class c
Disorder Term
Disorder = \left(\sum_{c}^{n_{classes}} \frac{n_c}{n_b} \log_2 \left(\frac{n_c}{n_b} \right) \right)

Average disorder = \sum_{b=1}^{n_{branches}} \frac{n_b}{n_t} \cdot \text{disorder}(b)

Calculation for Attribute Humidity
\begin{tabular}{|c|c||c|c|c|}
\hline
branch & value & n_{bp} & n_{bn} & disorder \\
\hline
1 & high & 3 & 4 & .99 \\
2 & normal & 6 & 1 & .58 \\
\hline
\end{tabular}

Disorder(high) = -\frac{3}{4} \log_2 \left(\frac{3}{4} \right) - \frac{4}{7} \log_2 \left(\frac{4}{7} \right) = .99

Disorder(normal) = -\frac{6}{7} \log_2 \left(\frac{6}{7} \right) - \frac{1}{7} \log_2 \left(\frac{1}{7} \right) = .58

Average Disorder of Humidity =
\frac{7}{14} \cdot \text{Disorder(high)} + \frac{7}{14} \cdot \text{Disorder(normal)} =
\frac{7}{14}(.99) + \frac{7}{14}(.58) = .79

Selection of Attribute
\begin{tabular}{|c|c|}
\hline
Attribute & Average Disorder \\
\hline
outlook & 0.69 \\
temperature & 0.91 \\
humidity & 0.79 \\
windy & 0.89 \\
\hline
\end{tabular}

Information Gain and Entropy
- S is a sample of training examples
- p is the proportion of positive examples in S
- n is the proportion of negative examples in S
- Entropy (our Disorder) measures the impurity of S
 \[\text{Entropy}(S) \equiv -p \log_2 p - n \log_2 n \]

Information Gain measures the expected reduction in entropy caused by partitioning the examples according to attribute A.

\[\text{Gain}(S, A) = \text{Entropy}(S) - \sum_{v \in \text{Values}(A)} \frac{|S_v|}{|S|} \cdot \text{Entropy}(S_v) \]
Decision Trees

Goal: Construct a decision tree that agrees (is consistent) with the training set.

Trivial solution: construct a decision tree that has one path to a leaf for every example.

Problem with trivial solution?

Non-trivial solution: find a concise decision tree that agrees with the training data.

Appropriate Problems for Decision Tree Learning

- Instances represented by attribute-value pairs
- Target function has a discrete number of output values
- Disjunctive descriptions may be required

Practical Uses of Decision Trees

1. Making credit decisions for Am-Ex UK
2. Automated sky object classification and cataloguing
3. Gas-oil separation (BP) [Michie, 1986].
4. Automatic pilot [Sammut et al., 1992]

Decision Trees on Real Problems

Must consider the following issues:

1. Assessing the performance of a learning algorithm
2. Inadequate attributes (problem across all ML algorithms)
3. Noise in the data
4. Missing values
5. Attributes with numeric values
6. Bias in attribute selection
Assessing the performance of a learning algorithm

Performance task: predict the classifications of unseen examples

Assessing prediction quality after tree construction: check the classifier’s predictions on a test set.

But this requires that we get more data after we have trained.

Evaluation Methodology

1. Collect a large set of examples
2. Divide it into two disjoint sets: the training set and the test set
3. Use the learning algorithm with the training set to generate a hypothesis H
4. Measure the percentage of examples in the test set that are classified correctly by H
5. Repeat steps 1 to 4 for different sizes of training sets and different randomly selected training sets of each size.

Learning Curve

![Learning Curve Graph](image)

Inadequate Attributes

- Cause inconsistent instances (rare in real-world data)
- Lead to larger decision trees as more splits are required
Noisy Data

Incorrect attribute values. Incorrect in class labels.

Noise can be caused by many factors, such as:

1. Faulty measurements
2. Ill-defined thresholds
3. Subjective interpretation

A further complication: may or may not know whether data is noisy.

An Example of Noisy Data

Task: Diagnosing Alzheimer’s disease

Data: Patient records describe age, results of various tests, etc.

Example Object:

\((\text{Age}=10, \text{T1}=0.345, \ldots, \text{Class}=\text{HasDisease})\)

Either the value of Age is incorrect or the Class label is incorrect.

The Real World: Dealing with Noise

Inconsistent examples cause the decision tree algorithm to fail to find a tree consistent with all training examples.

Solutions:

1. have each leaf node report the majority class
2. have each leaf report the estimated probabilities of each classification using the relative frequencies

The Real World: Dealing with Noise – Part II

Algorithm may choose to test irrelevant attributes

Example: goal is to predict whether a coin toss will come up heads or tails using the attributes: month, time (night, day), coin type (nickel, dime, ...)

What is the resulting decision tree?

What would be the best decision tree?
Dealing with Noise: The Problem of Overfitting

Definition: finding meaningless “regularity” in the data

This problem is general to all learning algorithms

Solution for decision trees: decide that testing further attributes will not improve predictive accuracy of the decision tree (called pruning).

Recognizing Overfitting

![Graph showing accuracy vs. size of tree](image)

- On training data
- On test data

Unknown Attribute Values

1. Throw away instances during training; during testing, try all paths, letting leaves vote.
2. Take class average.
3. Take class average observed at node.
4. Build another classifier to fill in the missing value.

Bias in Attribute Selection

Problem: Metric chooses higher branching attributes

Solution: Take into account the branching factor
Attributes with Numeric Values

Look for best splits.
1. Sort values
2. Create Boolean vars out of mid points
3. Evaluate all of these using information gain formula
4. Do once or at every leaf?

Representational Restrictions

Just consider boolean concept learning.

Concept description:
\[(a_i = v_{a_i}) \land (a_j = v_{a_j}) \land (a_k = v_{a_k}) \land \ldots) \lor\]
\[(a_i = v_{a_x}) \land (a_m = v_{a_y}) \land (a_n = v_{a_n}) \land \ldots) \lor \ldots\]

Problems:
- Inefficient representation for some functions.
- Can’t test two features simultaneously.

Learning as Search

Search through a space of concept descriptions

\(H\) is the set of concept descriptions considered by the ML algorithm. ML algorithm believes:

\[H_1 \lor H_2 \lor H_3 \lor \ldots H_n\]

The \(H_i\) can be partially ordered according to their generality. Search can proceed from general \(\rightarrow\) specific, or specific \(\rightarrow\) general.