Game Playing

An AI Favorite

- structured task
- not initially thought to require large amounts of knowledge
- focus on games of perfect information

Initial State is the initial board/position

Successor Function defines the set of legal moves from any position

Terminal Test determines when the game is over

Utility Function gives a numeric outcome for the game

Game Playing as Search

Partial Search Tree for Tic-Tac-Toe
Simple Minimax

Slide CS472 – Adversarial Search 5

Simplified Minimax Algorithm

1. Expand the entire tree below the root.
2. Evaluate the terminal nodes as wins for the minimizer or maximizer.
3. Select an unlabeled node, \(n \), all of whose children have been assigned values. If there is no such node, we’re done — return the value assigned to the root.
4. If \(n \) is a minimizer move, assign it a value that is the minimum of the values of its children. If \(n \) is a maximizer move, assign it a value that is the maximum of the values of its children. Return to Step 3.

Slide CS472 – Adversarial Search 6

Another Example

Slide CS472 – Adversarial Search 7

Minimax

function MINIMAX-DECISION(game) returns an operator

for each \(op \) in OPERATORS[game]
do
VALUE[\(op \)] \leftarrow \text{MINIMAX-VALUE}(\text{APPLY}(op, game), game)
end
return the \(op \) with the highest VALUE[\(op \)]

function MINIMAX-VALUE(state, game) returns a utility value

if \text{TERMINAL-TEST}[game](state)
then
return \text{UTILITY}[game](state)
else if \(MAX \) is to move in \(state \)
then
return the highest \text{MINIMAX-VALUE} of \text{SUCCESSORS}(state)
else
return the lowest \text{MINIMAX-VALUE} of \text{SUCCESSORS}(state)

Slide CS472 – Adversarial Search 8
The Need for Imperfect Decisions

Problem: Minimax assumes the program has time to search to the terminal nodes.

Solution: Cut off search earlier and apply a heuristic evaluation function to the leaves.

Static Evaluation Functions

Minimax depends on the translation of board quality into a single, summarizing number. Difficult. Expensive.

- Add up values of pieces each player has (weighted by importance of piece).
- Isolated pawns are bad.
- How well protected is your king?
- How much maneuverability to you have?
- Do you control the center of the board?
- Strategies change as the game proceeds.

Design Issues for Heuristic Minimax

Evaluation Function: What features should we evaluate and how should we use them? An evaluation function should:

1. ...
2. ...
3. ...

Linear Evaluation Functions

- \(w_1f_1 + w_2f_2 + \ldots + w_nf_n \)
- This is what most game playing programs use
- Steps in designing an evaluation function:
 1. Pick informative features
 2. Find the weights that make the program play well
Design Issues for Heuristic Minimax

Search: search to a constant depth

Problems:

-
-

Two More Examples

Algebraic Solution

Let $g' = e(g)$. Then $c' = \min(-.05, g')$.

The value assigned to the root node a is

$$a' = \max(.03, \min(-.05, g')) = .03$$

because $\min(-.05, g') \leq -.05 < .03$.

The value assigned to a is independent of the value assigned to g.
A deep $\alpha - \beta$ cutoff

Slide CS472 – Adversarial Search 17

$\alpha - \beta$ Search

$c =$ search cutoff
$\alpha =$ lower bound on Max’s outcome; initially set to $-\infty$
$\beta =$ upper bound on Min’s outcome ; initially set to $+\infty$

We’ll call $\alpha - \beta$ procedure recursively with a narrowing range between α and β.

Maximizing levels may reset α to a higher value; Minimizing levels may reset β to a lower value.

Slide CS472 – Adversarial Search 18

$\alpha - \beta$ Search Algorithm

1. If the limit of search has been reached, compute $e(n)$ and report the result.

2. Otherwise, if the level is a minimizing level,
 - Until no more children or $\beta \leq \alpha$,
 - Use $\alpha - \beta$ search on child with current values of α and β; note the value, v, returned.
 - If $v < \beta$, reset β to v.
 - Report β.

Slide CS472 – Adversarial Search 19

If m is better than n for Player, never get to n in play.

Slide CS472 – Adversarial Search 20
3. Otherwise, the level is a **maximizing** level:
 - Until no more children or $\alpha \geq \beta$,
 - Use $\alpha - \beta$ search on child with current values of α and β; note the value, v, returned.
 - If $v > \alpha$, reset α to v.
 - Report α.

Search Space Size Reductions

Worst Case: In an ordering where worst options evaluated first, all nodes must be examined.

Best Case: If nodes ordered so that the best options are evaluated first, then what?
Backgammon – Rules

- Goal: move all of your pieces off the board before your opponent does.
- Black moves counterclockwise toward 0.
- White moves clockwise toward 25.
- A piece can move to any position except one where there are two or more of the opponent’s pieces.
- If it moves to a position with one opponent piece, that piece is captured and has to start it’s journey from the beginning.

White has rolled 6-5 and has 4 legal moves: (5-10,5-11), (5-11,19-24), (5-10,10-16) and (5-11,11-16).
Expectiminimax

Expectiminimax \((n) = \)

- \(\text{utility}(n) \) for \(n \), a terminal state
- \(\max_{s \in \text{Succ}(n)} \text{expectiminimax}(s) \) for \(n \), a Max node
- \(\min_{s \in \text{Succ}(n)} \text{expectiminimax}(s) \) for \(n \), a Min node
- \(\sum_{s \in \text{Succ}(n)} P(s) * \text{expectiminimax}(s) \) for \(n \), a chance node

State of the Art in Backgammon

- 1980: *BKG* using two-ply (depth 2) search and lots of luck defeated the human world champion.
- 1992: Tesauro combines Samuel’s learning method with neural networks to develop a new evaluation function, resulting in a program ranked among the top 3 players in the world.

State of the Art in Checkers

- 1952: Samuel developed a checkers program that learned its own evaluation function through self play.
- 1990: *Chinook* (J. Schaeffer) wins the U.S. Open. At the world championship, Marion Tinsley beat *Chinook*.
State of the Art in Go
Large branching factor makes regular search methods inappropriate.
Best computer Go programs ranked only “weak amateur”.
Employ pattern recognition techniques and limited search.
$2,000,000 prize available for first computer program to defeat a top level player.

Othello
• Smaller search space than chess; usually 5 to 15 legal moves.
• Evaluation function expertise had to be developed from scratch.
• 1997: Logistello defeated the human world champion, 6-0.
• Generally acknowledged that humans are no match for computers at Othello.

History of Chess in AI
<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>legal chess</td>
</tr>
<tr>
<td>1200</td>
<td>occasional player</td>
</tr>
<tr>
<td>2000</td>
<td>world-ranked</td>
</tr>
<tr>
<td>2900</td>
<td>Gary Kasparov</td>
</tr>
</tbody>
</table>

Early 1950’s Shannon and Turing both had programs that (barely) played legal chess (500 rank).
1950’s Alex Bernstein’s system, (500+ε).
1957 Herb Simon claims that a computer chess program would be world chess champion in 10 years...yeah, right.
speeding up the search. Improved rapidly when put on faster machines.

1976 Chess 4.5: ranking of 2070.

1980’s Programs depend on search speed rather than knowledge (2300 range).

1993 DEEP THOUGHT: Sophisticated special-purpose computer; $\alpha - \beta$ search; searches 10-ply; singular extensions; rated about 2600.

1995 DEEP BLUE: searches 14-ply; considers 100–200 billion positions per move; regularly reaches depth 14;
evaluation function has 8000+ features; singular extensions to 40-ply; opening book of 4000 positions; end-game database for 5-6 pieces.

1997 DEEP BLUE: first match won against world-champion (Kasparov).

2002 IBM declines re-match. FRITZ played world champion Vladimir Kramnik. 8 games. Ended in a draw.

Concludes “Search”

- Problem Solving as Search

- Uninformed search: DFS / BFS / Uniform cost search
time / space complexity
size search space: up to approx. 10^{11} nodes
special case: Constraint Satisfaction / CSPs
generic framework: variables & constraints
backtrack search (DFS); propagation (forward-checking / arc-consistency, variable / value ordering

- Informed Search: use heuristic function guide to goal
 Greedy best-first search
 A^* search / provably optimal
 Search space up to approximately 10^{25}
Local search
 Greedy / Hillclimbing
 Simulated annealing
 Tabu search
 Genetic Algorithms / Genetic Programming
search space 10^{100} to 10^{1000}
Search and AI

Why such a central role?

Basically, because lots of tasks in AI are intractable.
Search is “only” way to handle them.

Many applications of search, in e.g.,
Learning / Reasoning / Planning / NLU / Vision

Good thing: much recent progress (10^{30} quite feasible;
sometimes up to 10^{1000}). Qualitative difference
from only a few years ago!

- Aversarial Search / Game Playing
 - minimax

 Up to around 10^{10} nodes, 6 — 7 ply in chess.
 - alpha-beta pruning

 Up to around 10^{20} nodes, 14 ply in chess.
 provably optimal