1943–1956 The Beginnings of AI

1943 McCulloch and Pitts show networks of neurons can compute and learn any function

1950 Shannon (1950) and Turing (1953) wrote chess programs

1951 Minsky and Edmonds build the first neural network computer (SNARC)

1956 Dartmouth Conference – Newell and Simon brought a reasoning program The Logic Theorist which proved theorems.

1952–1969 The Good Years

1952 Samuel’s checkers player

1958 McCarthy designed LISP, helped invent time-sharing, and created Advice Taker (a domain independent reasoning system)

1962 Perceptron Convergence Theorem is proved.

Example ANALOGY Problem

![Example ANALOGY Problem](image)

Blocksworld

![Blocksworld](image)
History of AI
1966–1974 A Dose of Reality

- Herb Simon (1957)
- Machine translation
- Knowledge-poor programs
- Intractable problems, lack of computing power (Lighthill Report, 1973)
- Limitations in knowledge representation (Minsky and Papert, 1969)

Knowledge Representation

- Human intelligence relies on a lot of background knowledge (the more you know, the easier many tasks become / “knowledge is power”)
- E.g. SEND + MORE = MONEY puzzle.
- Natural language understanding
 - Time flies like an arrow.
 - Fruit flies like bananas.
 - The spirit is willing but the flesh is weak. (English)
 - The vodka is good but the meat is rotten. (Russian)
- Or: Plan a trip to L.A.

Knowledge-Based Systems / Agents

Key components:

- knowledge base: a set of sentences expressed in some knowledge representation language
- inference / reasoning mechanisms to query what is known and to derive new information or make decisions

Natural candidate: logical language (propositional / first-order) combined with a logical inference mechanism
How close to human thought?
In any case, appears reasonable strategy for machines.
Logic as a Knowledge Representation

Components:

- syntax
- semantics (link to the world)
- logical reasoning
 - entailment: \(\alpha \models \beta \) iff, in every model in which \(\alpha \) is true, \(\beta \) is also true.
- inference algorithm
 - \(KB \vdash \alpha \), i.e., \(\alpha \) is derived from KB

To make it work: soundness and completeness.

Soundness and Completeness

An inference algorithm that derives only entailed sentences is called **sound** or **truth-preserving**.

\[KB \vdash \alpha \] implies \(KB \models \alpha \).

An inference algorithm is **complete** if it can derive any sentence that is entailed.

\[KB \models \alpha \] implies \(KB \vdash \alpha \).

Why so important?
Allow computer to ignore semantics and “just push symbols”!

Connecting Sentences to the World

- Sentences
- Entails
- Sentence
- Semantics
- Facts
- Follows
- Fact

All computer has are sentences (hopefully about the world). Sensors can provide some grounding.
KR Language: Propositional Logic

Syntax: build sentences from atomic propositions, using connectives $\land, \lor, \neg, \Rightarrow, \iff$.
(and / or / not / implies / equivalence (biconditional))

E.g.: $((\neg P) \lor (Q \land R)) \Rightarrow S$

Semantics

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$P \land Q$</th>
<th>$P \lor Q$</th>
<th>$P \Rightarrow Q$</th>
<th>$P \iff Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

Note: \Rightarrow somewhat counterintuitive.
What’s the truth value of “5 is even implies Sam is smart”?

First-Order Logic as a Knowledge Representation

propositions: “It is raining” becomes RAINING

operators: $\lor, \land, \neg, \sim, =, \Rightarrow, \iff$

predicates: Man(SOCRATES) for “Socrates is a man.”

$\text{On}(A, B)$. Can be functions: $\text{on} - \text{top} - \text{of}(A)$.

quantifiers:

All men are mortal.

$\forall x : \text{Man}(x) \Rightarrow \text{Mortal}(x)$

Some man is mortal.

$\exists x : \text{Man}(x) \Rightarrow \text{Mortal}(x)$

Reasoning Methods: Rules of Inference

1. Modus Ponens:
 Assume: $P \Rightarrow Q$ If raining, then soggy courts.
 and P It is raining.
 Then: Q Soggy Courts.

2. Modus Tollens:
 Assume: $P \Rightarrow Q$ If raining, then soggy courts.
 and $\neg Q$ No soggy courts.
 Then: $\neg P$ It is not raining.
Representing Facts
1. Pingali is a CS professor.
2. All CS professors are ENG professors.
3. Fuchs is the dean.
4. All ENG professors are a friend of the dean or don’t know him.
5. Everyone is a friend of someone.
6. People only criticize deans they are not friends of.
7. Pingali criticized Fuchs.

Is Pingali a friend of Fuchs?
\neg \text{friend-of (Pingali, Fuchs)}

Representing Subset Hierarchies
Member:
\[
\text{CSPROF} (\text{Pingali}) \\
\text{or} \\
\text{member} (\text{Pingali, CSPROF})
\]
subset:
\[
\forall x : \text{CSPROF} (x) \Rightarrow \text{ENGPROF} (x) \\
\text{or} \\
\text{isa} (\text{CSPROF, ENGPROF})
\]

Forward Chaining
Given a fact \(p \) to be added to the KB,
1. Find all implications \(I \) that have \(p \) as a premise
2. For each \(i \) in \(I \), if the other premises in \(i \) are already known to hold
 (a) Add the consequent in \(i \) to the KB
Continue until no more facts can be inferred.
Backward Chaining
Given a fact q to be “proven”,
1. See if q is already in the KB. If so, return TRUE.
2. Find all implications, I, whose conclusion “matches” q.
3. Establish the premises of all i in I via backward chaining.

Knowledge Engineering
1. Identify the task.
2. Assemble the relevant knowledge.
3. Decide on a vocabulary of predicates, functions, and constants.
4. Encode general knowledge about the domain.
5. Encode a description of the specific problem instance.
6. Pose queries to the inference procedure and get answers.
7. Debug the knowledge base.

Inference Procedures: Theoretical Results
- There exist complete and sound proof procedures for propositional and FOL.
 - Propositional logic
 * Use the definition of entailment directly. Proof procedure is exponential in n, the number of symbols.
 * In practice, can be much faster...
 * Polynomial-time inference procedure exists when KB is expressed as **Horn clauses**: $P_1 \land P_2 \land \ldots \land P_n \Rightarrow Q$
 where the P_i and Q are nonnegated atoms.

 - First-Order
 * Gödel’s completeness theorem showed that a proof procedure exists...
 * But none was demonstrated until Robinson’s 1965 *resolution algorithm*.
 - Entailment in first-order logic is *semidecidable*.
Resolution Rule of Inference

Assume: $E_1 \lor E_2$ playing tennis or raining
and $\neg E_2 \lor E_3$ not raining or working
Then: $E_1 \lor E_3$ playing tennis or working

General Resolution Rule

If $(L_1 \lor L_2 \lor \ldots L_k)$ is true,
and $(\neg L_k \lor L_{k+1} \lor \ldots L_m)$ true,
then we can conclude that
$(L_1 \lor L_2 \lor \ldots L_{k-1} \lor L_{k+1} \lor \ldots \lor L_m)$ is true.

Algorithm: Resolution Proof

- Negate the theorem to be proved, and add the result to the list of axioms.
- Put the list of axioms into conjunctive normal form.
- Until there is no resolvable pair of clauses,
 - Find resolvable clauses and resolve them.
 - Add the results of resolution to the list of clauses.
 - If NIL (empty clause) is produced, stop and report that the (original) theorem is true.
- Report that the (original) theorem is false.

Resolution Example

Example: Prove $\neg P$
Axioms:

<table>
<thead>
<tr>
<th>Regular</th>
<th>CNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axiom 1: $P \rightarrow Q$</td>
<td>$\neg P \lor Q$</td>
</tr>
<tr>
<td>2: $Q \rightarrow R$</td>
<td>$\neg Q \lor R$</td>
</tr>
<tr>
<td>3: $\neg R$</td>
<td></td>
</tr>
</tbody>
</table>
Resolution Example (cont.)

1. \(\neg P \lor Q \) \(\text{Axiom 1}\)
2. \(\neg Q \lor R \) \(\text{Axiom 2}\)
3. \(\neg R \) \(\text{Axiom 3}\)
4. \(P \) \(\text{Assume opposite}\)
5. \(Q \) \(\text{Resolve 4 and 1}\)
6. \(R \) \(\text{Resolve 5 and 2}\)
7. \text{nil} \(\text{Resolve 6 with 3}\)

Resolution Example: FOL

Example: Prove bird(tweety)

Axioms:

- Regular CNF

1. \(\forall x : feathers(x) \rightarrow bird(x) \)
2. \(feathers(tweety) \)
3.

Resolution

I put KB in CNF (clausal) form
all variables universally quantified
main trick: “skolemization” to remove existentials
idea: invent names for unknown objects known to exist

II use unification to match atomic sentences

III apply resolution rule to the clausal set combined
with negated goal. Attempt to generate empty clause.

Resolution Theorem Proving

- sound (for propositional and FOL)
- complete (for propositional and FOL)

Procedure may seem cumbersome but note that can be
easily automated. Just “smash” clauses until empty clause
or no more new clauses.
Converting more complicated axioms to CNF

Axiom:
\[\forall x : \text{brick}(x) \rightarrow ((\exists y : \text{on}(x,y) \land \neg \text{pyramid}(y)) \land (\neg \exists y : \text{on}(x,y) \land \text{on}(y,x)) \land (\forall y : \neg \text{brick}(y) \rightarrow \neg \text{equal}(x,y))) \]

\[\neg \text{brick}(x) \lor \text{on}(x,\text{support}(x)) \]
\[\neg \text{brick}(w) \lor \neg \text{pyramid}(\text{support}(w)) \]
\[\neg \text{brick}(u) \lor \neg \text{on}(u,y) \lor \neg \text{on}(y,u) \]
\[\neg \text{brick}(v) \lor \text{brick}(z) \lor \neg \text{equal}(v,z) \]

Slide CS472 – Knowledge-Based Systems 33

1. Eliminate Implications
Substitute \(\neg E_1 \lor E_2 \) for \(E_1 \rightarrow E_2 \)
\[\forall x : \text{brick}(x) \rightarrow ((\exists y : \text{on}(x,y) \land \neg \text{pyramid}(y)) \land (\neg \exists y : \text{on}(x,y) \land \text{on}(y,x)) \land (\forall y : \neg \text{brick}(y) \rightarrow \neg \text{equal}(x,y))) \]
\[\forall x : \neg \text{brick}(x) \lor ((\exists y : \text{on}(x,y) \land \neg \text{pyramid}(y)) \land (\neg \exists y : \text{on}(x,y) \land \text{on}(y,x)) \land (\forall y : \neg ((\neg \text{brick}(y)) \lor \neg \text{equal}(x,y)))) \]

Slide CS472 – Knowledge-Based Systems 34

2. Move negations down to the atomic formulas
\[\neg (E_1 \land E_2) \iff (\neg E_1) \lor (\neg E_2) \]
\[\neg (E_1 \lor E_2) \iff (\neg E_1) \land (\neg E_2) \]
\[\neg (\neg E_1) \iff E_1 \]
\[\neg \forall x : E_1(x) \iff \exists x : \neg E_1(x) \]
\[\neg \exists x : E_1(x) \iff \forall x : \neg E_1(x) \]
\[\forall x : \neg \text{brick}(x) \lor ((\exists y : \text{on}(x,y) \land \neg \text{pyramid}(y)) \land (\neg \exists y : \text{on}(x,y) \land \text{on}(y,x)) \land (\forall y : \neg (\neg \text{brick}(y)) \lor \neg \text{equal}(x,y))) \]

Slide CS472 – Knowledge-Based Systems 35

3. Eliminate Existential Quantifiers
Skolemization
Harder cases:
\[\forall x : \exists y : \text{father}(y,x) \text{ becomes } \forall x : \text{father}(S1(x),x) \]
There is one argument for each universally quantified variable whose scope contains the Skolem function.

Easy case:
\[\exists x : \text{President}(x) \text{ becomes } \text{President}(S2) \]
\[\forall x : \neg \text{brick}(x) \lor ((\exists y : \text{on}(x,y) \land \neg \text{pyramid}(y)) \land \ldots \]

Slide CS472 – Knowledge-Based Systems 36
4. Rename variables as necessary
We want no two variables of the same name.

$$\forall x : \neg \text{brick}(x) \lor ((\text{on}(x, S1(x)) \land \neg \text{pyramid}(S1(x))))$$

This works because each quantifier uses a unique variable name.

$$\forall x : \neg \text{brick}(x) \lor ((\text{on}(x, S1(x)) \land \neg \text{pyramid}(S1(x))))$$

5. Move the universal quantifiers to the left

$$\forall x : \neg \text{brick}(x) \lor ((\text{on}(x, S1(x)) \land \neg \text{pyramid}(S1(x))))$$

6. Move disjunctions down to the literals

$$E_1 \lor (E_2 \land E_3) \iff (E_1 \lor E_2) \land (E_1 \lor E_3)$$

$$\forall x \forall y \forall z : (\neg \text{brick}(x) \lor (\text{on}(x, S1(x)) \land \neg \text{pyramid}(S1(x))))$$

$$\forall x \forall y \forall z : (\neg \text{brick}(x) \lor (\text{on}(x, S1(x)) \land \neg \text{pyramid}(S1(x))))$$

7. Eliminate the conjunctions

$$\forall x \forall y \forall z : (\neg \text{brick}(x) \lor \text{on}(x, S1(x)))$$

$$\forall x : \neg \text{brick}(x) \lor \text{on}(x, S1(x))$$
8. Rename all variables, as necessary, so no two have the same name

\[\forall x : \neg \text{brick}(x) \lor \text{on}(x, S1(x)) \]
\[\forall x : \neg \text{brick}(x) \lor \neg \text{pyramid}(S1(x)) \]
\[\forall x \forall y : \neg \text{brick}(x) \lor \neg \text{on}(x, y) \lor \neg \text{on}(y, x) \]
\[\forall x \forall z : \neg \text{brick}(x) \lor \text{brick}(z) \lor \neg \text{equal}(x, z) \]
\[\forall x : \neg \text{brick}(x) \lor \text{on}(x, S1(x)) \]
\[\forall w : \neg \text{brick}(w) \lor \neg \text{pyramid}(S1(w)) \]
\[\forall u \forall y : \neg \text{brick}(u) \lor \neg \text{on}(u, y) \lor \neg \text{on}(y, u) \]
\[\forall v \forall z : \neg \text{brick}(v) \lor \text{brick}(z) \lor \neg \text{equal}(v, z) \]

9. Eliminate the universal quantifiers

\[\neg \text{brick}(x) \lor \text{on}(x, S1(x)) \]
\[\neg \text{brick}(w) \lor \neg \text{pyramid}(S1(w)) \]
\[\neg \text{brick}(u) \lor \neg \text{on}(u, y) \lor \neg \text{on}(y, u) \]
\[\neg \text{brick}(v) \lor \text{brick}(z) \lor \neg \text{equal}(v, z) \]

Algorithm: Putting Axioms into Clausal Form

- Eliminate the implications.
- Move the negations down to the atomic formulas.
- Eliminate the existential quantifiers.
- Rename the variables, if necessary.
- Move the universal quantifiers to the left.
- Move the disjunctions down to the literals.
- Eliminate the conjunctions.
- Rename the variables, if necessary.
- Eliminate the universal quantifiers.

Unification

UNIFY \((P, Q)\) takes two atomic sentences \(P\) and \(Q\) and returns a substitution that makes \(P\) and \(Q\) look the same.

Rules for substitutions:

- Can replace a variable by a constant.
- Can replace a variable by a variable.
- Can replace a variable by a function expression, as long as the function expression does not contain the variable.

Unifier: a substitution that makes two clauses resolvable.

\(v_1/C; v_2/v_3; v_4/f(…)\)
Unification — Purpose

Given:
- \(\text{Knows}(John, x) \rightarrow \text{Hates}(John, x) \)
- \(\text{Knows}(John, Jim) \)

Derive:
- \(\text{Hates}(John, Jim) \)

Need unifier \(\{x/\text{Jim}\} \) for resolution to work. (simplest case)

\(\neg \text{Knows}(John, x) \lor \text{Hates}(John, x) \)
\(\text{Knows}(John, Jim) \)

How do we resolve? First, match them.

Solution:
UNIFY(\(\text{Knows}(John, x) \), \(\text{Knows}(John, Jim) \)) = \(\{x/\text{Jim}\} \)

Gives
\(\neg \text{Knows}(John, Jim) \lor \text{Hates}(John, Jim) \) and
\(\text{Knows}(John, Jim) \)

Conclude by resolution
\(\text{Hates}(John, Jim) \)

Unification (example)

one rule:
- \(\text{Knows}(John, x) \rightarrow \text{Hates}(John, x) \)

facts:
- \(\text{Knows}(John, Jim) \)
- \(\text{Knows}(y, Leo) \)
- \(\text{Knows}(z, \text{Mother}(z)) \)
- \(\text{Knows}(x, Jane) \)

Who does John hate?

UNIFY(\(\text{Knows}(John, x) \), \(\text{Knows}(John, Jim) \)) = \(\{x/\text{Jim}\} \)
UNIFY(\(\text{Knows}(John, x) \), \(\text{Knows}(y, Leo) \)) = \(\{x/\text{Leo}, y/\text{John}\} \)
UNIFY(\(\text{Knows}(John, x) \), \(\text{Knows}(z, \text{Mother}(z)) \)) = \(\{z/\text{John}, x/\text{Mother}(\text{John})\} \)
UNIFY(\(\text{Knows}(John, x) \), \(\text{Knows}(x, Jane) \)) = \text{fail}
Most General Unifier

In cases where there is more than one substitution choose the one that makes the least commitment (most general) about the bindings.

\[
\text{UNIFY}(\text{Knows}(John, x), \text{Knows}(y, z))
\]

\[
= \{y/John, x/z\}
\]

or \(\{y/John, x/z, z/Freda\}\)

or \(\{y/John, x/John, z/John\}\)

or

See R&N for general unification algorithm. \(O(n^2)\) with Refutation

Example

Jack owns a dog.

Every dog owner is an animal lover.

No animal lover kills an animal.

Either Jack or Curiosity killed the cat, who is named Tuna.

Did Curiosity kill the cat?

Original Sentences (Plus Background Knowledge)

1. \(\exists x: \text{Dog}(x) \land \text{Owns}(Jack, x)\)
2. \(\forall x; \ (\exists y \ \text{Dog}(y) \land \text{Owns}(x, y)) \rightarrow \text{AnimalLover}(x)\)
3. \(\forall x; \ \text{AnimalLover}(x) \rightarrow (\forall y \ \text{Animal}(y) \rightarrow \neg \text{Kills}(x, y))\)
4. \(\text{Kills}(Jack, Tuna) \lor \text{Kills}(Curiosity, Tuna)\)
5. \(\text{Cat}(Tuna)\)
6. \(\forall x: \ \text{Cat}(x) \rightarrow \text{Animal}(x)\)

Conjunctive Normal Form

1. \(\text{Dog}(D)\) \hspace{1cm} (\(D\) is the function that finds Jack’s dog)
2. \(\text{Owns}(Jack, D)\)
3. \(\neg \text{Dog}(S(x)) \lor \neg \text{Owns}(x, S(x)) \lor \text{AnimalLover}(x)\)
4. \(\neg \text{AnimalLover}(w) \lor \neg \text{Animal}(y) \lor \neg \text{Kills}(w, y)\)
5. \(\text{Kills}(Jack, Tuna) \lor \text{Kills}(Curiosity, Tuna)\)
6. \(\text{Cat}(Tuna)\)
7. \(\neg \text{Cat}(z) \lor \text{Animal}(z)\)
Proof by Resolution

Proof by Resolution

Completeness

Resolution with unification applied to clausal form, is a complete inference procedure.

In practice, still significant search problem!
Many different search strategies: resolution strategies.
Strategies for Selecting Clauses

unit-preference strategy: Give preference to resolutions involving the clauses with the smallest number of literals.

set-of-support strategy: Try to resolve with the negated theorem or a clause generated by resolution from that clause.

subsumption: Eliminates all sentences that are subsumed (i.e., more specific than) an existing sentence in the KB.

May still require _exponential_ time.

Proofs can be lengthy

A relatively straightforward KB can quickly overwhelm general resolution methods. Resolution strategies reduce the problem somewhat, but not completely. As a consequence, many _practical_ Knowledge Representation formalisms in AI use a _restricted form_ and _specialized inference_.

Practical Knowledge-Based Systems

- **Theorem provers / logic programming**
 - Production systems
 - forward chaining / if-then-rules / expert systems
 - Frame systems and semantic networks
 - Description logics

Theorem provers / logic programming

Theorem provers: generally based on resolution many different strategies to improve efficiency. Logic programming: program statements directly in restricted FOL.

Execution: search for proof of goal/query using backward chaining with depth first-search. In certain cases too inefficient.
Production systems

- rich history in AI
- “expert system” boom in 70’s / 80’s

Basic idea:
- capture knowledge of human expert in a large set of “if-then” rules
 (really, logical implication ⇒)
- “production rules”

Components of Rule-Based Systems

working memory: set of positive literals with no variables

rule memory: set of inference rules

\[p_1 \land p_2 \ldots \rightarrow a_1 \land a_2 \ldots \]

where the \(p_i \) are literals, and the \(a_i \) are actions to take when the \(p_i \) are all satisfied

rule interpreter: inference engine

Sample Knowledge Base

Working Memory
(in robot room1)
(armempty robot)
(in table room1)
(on cup table)
(object table)
(object cup)
(room room1)
(room room2)

1. \((in \ robot \ ?x) \land (room \ ?y) \rightarrow (walk \ ?x \ ?y) \land (add \ (in \ robot \ ?y)) \land (delete \ (in \ robot \ ?x))\)
2. \((in \ robot \ ?x) \land (in \ ?y \ ?x) \land (object \ ?y) \land (not \ (at \ robot \ ?y)) \rightarrow (walk \ ?x \ ?y) \land (add \ (at \ robot \ ?y))\)
3. \((in \ robot \ ?x) \land (at \ robot \ ?y) \land (clear \ ?y) \land (armempty \ robot) \land (room \ ?z) \rightarrow (push \ ?y \ ?z) \land (add \ (in \ robot \ ?z)) \land (add \ (in \ ?y \ ?z)) \land (delete \ (in \ robot \ ?x)) \land (delete \ (in \ ?y \ ?x))\)
4. \((at \ robot \ ?x) \land (armempty \ robot) \land (on \ ?y \ ?x) \rightarrow (pickup \ ?y) \land (add \ (holding \ robot \ ?y)) \land (add \ (clear \ ?x)) \land (delete \ (armempty \ robot)) \land (delete \ (on \ ?y \ ?x))\)
5. \((holding \ robot \ ?x) \rightarrow (putdown \ ?x) \land (add \ (armempty \ robot)) \land (delete \ (holding \ robot \ ?x)) \land (add \ (on \ ?x \ floor))\)
Reasoning with Rules

Forward Reasoning
1. Until no rule can fire or goal state is achieved,
 (a) Find all rules whose left sides match assertions in working memory.
 (b) Pick some to execute; modify working memory by applying the right sides of the rules.

Three Parts to Forward-Chaining Rule Interpreter

Match: identifying which rules are applicable at any given point in the reasoning

Conflict Resolution: selecting which of many rules should be applied at any given point in the reasoning

Execute: execute the right-hand side of the rule

Example: forward chaining

Goal: (in table room2)
1. Rule 1 \(x = \text{room1}, y = \text{room1}, y = \text{room2}\)
 Rule 2 \(x = \text{room1}, y = \text{table}\)
Choose randomly; assume rule 2.
 Walk to table.
 Add: (at robot table)

2. Rule 1 same bindings
 Rule 2? Rule 4 \(x = \text{table}, y = \text{cup}\)
 Choose randomly; assume rule 4.
 Pick-up cup.
 Add: (holding robot cup)
 (clear table)
 Delete: (armempty robot)

3. Rule 1 same bindings
 Rule 5 \(x = \text{cup}\)
 Choose randomly; assume rule 5.
 Putdown cup.
 Add: (armempty robot)
 Add: (on cup floor)
Matching for Forward-Chaining

- requires smart indexing of the rules
- requires unification

Problem: For practical systems, applying unification in a straightforward manner will be very inefficient.

Rete algorithm: network-based data structure facilitates unification.

Successes in Rule-Based Reasoning

Expert systems
- DENDRAL (Buchanan *et al.*, 1969)
- MYCIN (Feigenbaum, Buchanan, Shortliffe)
- PROSPECTOR (Duda *et al.*, 1979)
- R1 (McDermott, 1982)

DENDRAL (Buchanan *et al.*, 1969)
- infers molecular structure from the information provided by a mass spectrometer
- generate-and-test method
- if there are peaks at x_1 and x_2 s.t.

 \[x_1 + x_2 = M + 28 \]

 $x_1 - 28$ is a high peak

 $x_2 - 28$ is a high peak

 At least one of x_1 and x_2 is high

 then there is a ketone subgroup
• MYCIN (Feigenbaum, Buchanan, Shortliffe)
 – diagnosis of blood infections
 – 450 rules; performs as well as experts
 – incorporated certainty factors
 If: (1) the stain of the organism is gram-positive, and
 (2) the morphology of the organism is coccus, and
 (3) the growth conformation of the organism is clumps,
 then there is suggestive evidence (0.7) that the identity of the organism is staphylococcus.

• PROSPECTOR (Duda et al., 1979)
 – correctly recommended exploratory drilling at a geological site
 – rule-based system founded on probability theory

• R1 (McDermott, 1982)
 – designs configurations of computer components
 – about 10,000 rules
 – uses meta-rules to change context
 If: current context is ?x
 then: deactivate ?x context
 and activate ?y context

Cognitive Modeling with Rule-Based Systems

SOAR is a general architecture for building intelligent systems.

• Long term memory consists of rules.
• Working memory describes current state.
• All problem solving, including deciding what rule to execute, is state space search.
• Successful rule sequences are chunked into new rules.
• Control strategy embodied in terms of meta-rules.

Example Syntax for Control Rule

Meta-rule
Under conditions A and B,
Rules that do \{not\} mention X
 \{at all, in their LHS, in their RHS \}
will
 \{definitely be useless, probably be useless, ..., probably be especially useful, definitely be especially useful \}
Advantages of Knowledge-Based Systems

1. Expressibility*
2. Simplicity of inference procedures*
3. Modifiability*
4. Explainability
5. Machine readability
6. Parallelism*

Disadvantages of Knowledge-Based Systems

1. Difficulties in expressibility
2. Undesirable interactions among rules
3. Non-transparent behavior
4. Difficult debugging
5. Slow
6. Where does the knowledge base come from???