Game Playing

An AI Favorite

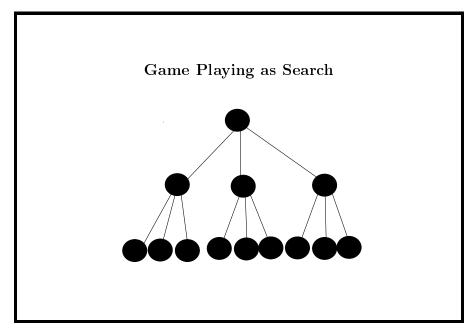
- structured task
- not initially thought to require large amounts of knowledge
- focus on games of perfect information

Slide CS472 – Game Playing 1

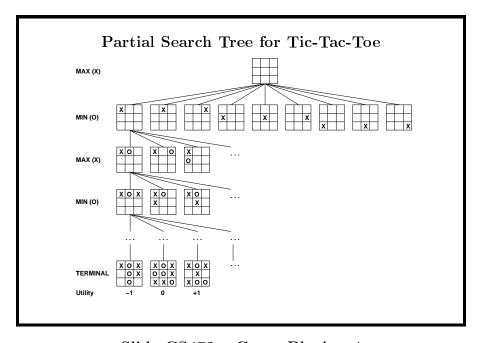
Game Playing

Initial State is the initial board/positionOperators define the set of legal moves from any positionTerminal Test determines when the game is overUtility Function gives a numeric outcome for the game

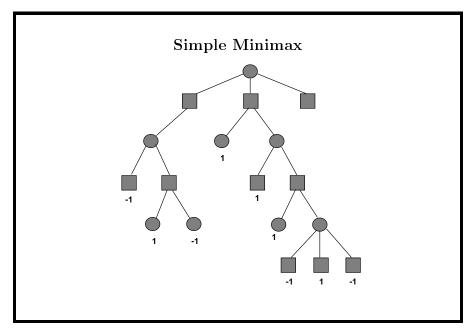
Slide CS472 – Game Playing 2



Slide CS472 – Game Playing 3



Slide CS472 – Game Playing 4

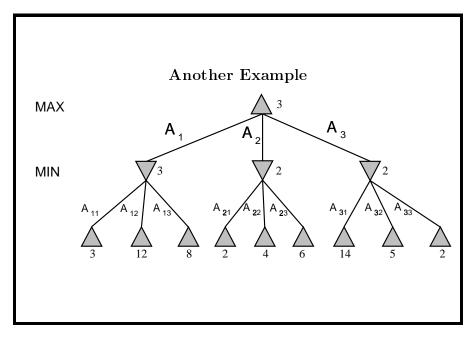


Slide CS472 - Game Playing 5

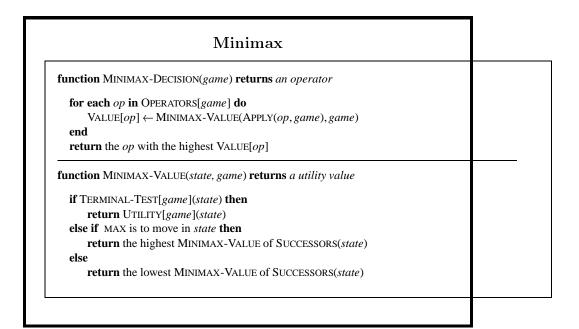
Simplified Minimax Algorithm

- 1. Expand the entire tree below the root.
- 2. Evaluate the terminal nodes as wins for the minimizer or maximizer.
- 3. Select an unlabeled node, n, all of whose children have been assigned values. If there is no such node, we're done return the value assigned to the root.
- 4. If n is a minimizer move, assign it a value that is the minimum of the values of its children. If n is a maximizer move, assign it a value that is the maximum of the values of its children. Return to Step 3.

Slide CS472 - Game Playing 6



Slide CS472 – Game Playing 7



Slide CS472 – Game Playing 8

The Need for Imperfect Decisions

Problem: Minimax assumes the program has time to search to the terminal nodes.

Solution: Cut off search earlier and apply a heuristic evaluation function to the leaves.

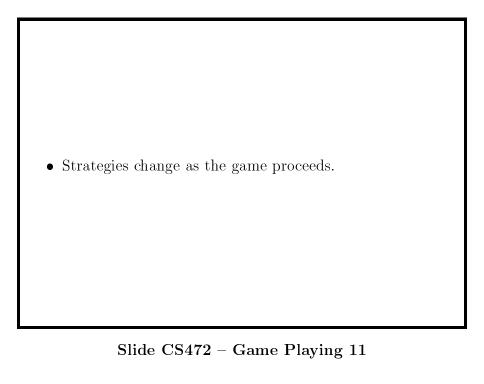
Slide CS472 - Game Playing 9

Static Evaluation Functions

Minimax depends on the translation of board quality into a single, summarizing number. Difficult. Expensive.

- Add up values of pieces each player has (weighted by importance of piece).
- Isolated pawns are bad.
- How well protected is your king?
- How much maneuverability to you have?
- Do you control the center of the board?

Slide CS472 – Game Playing 10



${\bf Design\ Issues\ of\ Heuristic\ Minimax}$

Evaluation Function: What features should we evaluate and how should we use them? An evaluation function should:

- 1.
- 2.
- 3.

Slide CS472 – Game Playing 12

Linear Evaluation Functions

- $w_1f_1 + w_2f_2 + ... + w_nf_n$
- This is what most game playing programs use
- Steps in designing an evaluation function:
 - 1. Pick informative features
 - 2. Find the weights that make the program play well

Slide CS472 - Game Playing 13

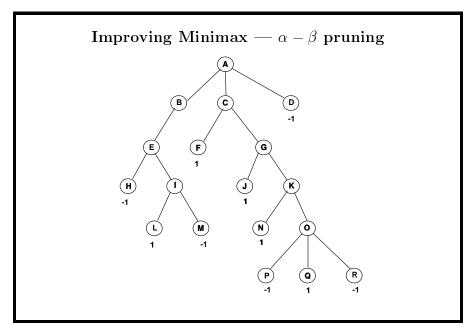
Design Issues of Heuristic Minimax

Search: search to a constant depth

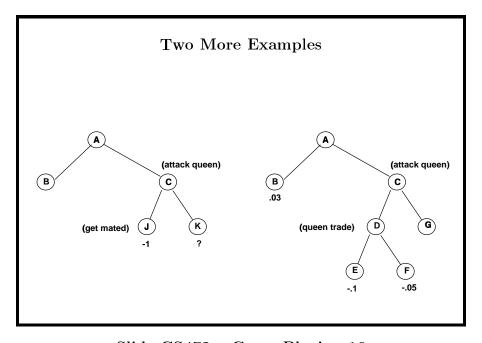
Problems:

- Some portions of the game tree may be "hotter" than others. Should search to quiescence. Continue along a path as long as one move's static value stands out (indicating a likely capture).
- Horizon effect
- Secondary search. (singular extension heuristic)

Slide CS472 - Game Playing 14



Slide CS472 – Game Playing 15



Slide CS472 – Game Playing 16

Algebraic Solution

Let g' = e(g). Then $c' = \min(-.05, g')$.

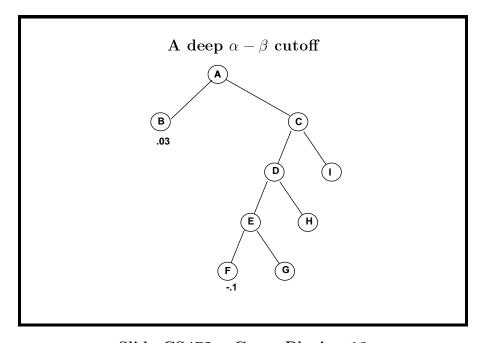
The value assigned to the root node a is

$$a' = \max(.03, \min(-.05, g')) = .03$$

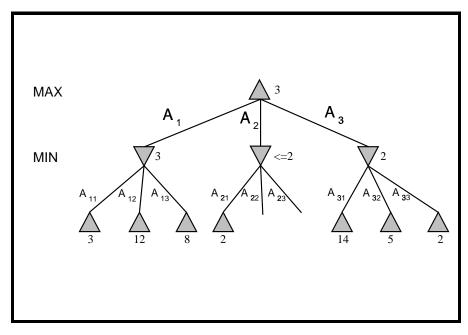
because $\min(-.05, g') \le -.05 < .03$.

The value assigned to a is independent of the value assigned to g.

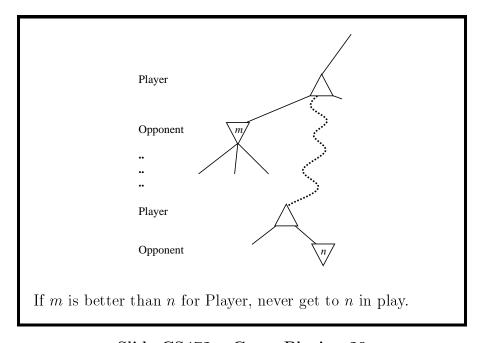
Slide CS472 – Game Playing 17



Slide CS472 – Game Playing 18



Slide CS472 – Game Playing 19



Slide CS472 – Game Playing 20

$\alpha - \beta$ Search

c = search cutoff

 α = lower bound on Max's outcome; initially set to $-\infty$

 β = upper bound on Min's outcome; initially set to $+\infty$

We'll call $\alpha - \beta$ procedure recursively with a narrowing range between α and β .

Maximizing levels may reset α to a higher value; Minimizing levels may reset β to a lower value.

Slide CS472 – Game Playing 21

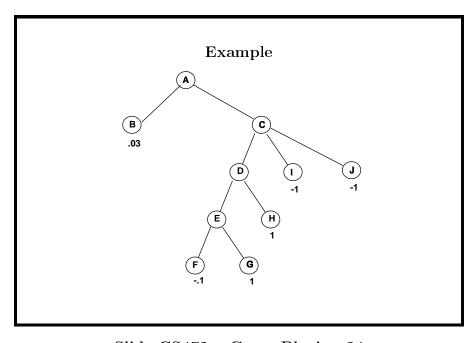
$\alpha - \beta$ Search Algorithm

- 1. If the limit of search has been reached, compute e(n) and report the result.
- 2. Otherwise, if the level is a **minimizing** level,
 - Until no more children or $\alpha \geq \beta$,
 - Use $\alpha \beta$ search on child with current values of α and β ; note the value, v, returned.
 - If $v < \beta$, reset β to v.
 - Report β .

Slide CS472 - Game Playing 22

- 3. Otherwise, the level is a **maximizing** level:
 - Until no more children or $\alpha \geq \beta$,
 - Use $\alpha \beta$ search on child with current values of α and β ; note the value, v, returned.
 - If $v > \alpha$, reset α to v.
 - Report α .

Slide CS472 – Game Playing 23

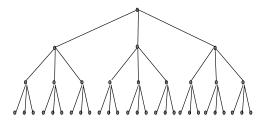


Slide CS472 – Game Playing 24

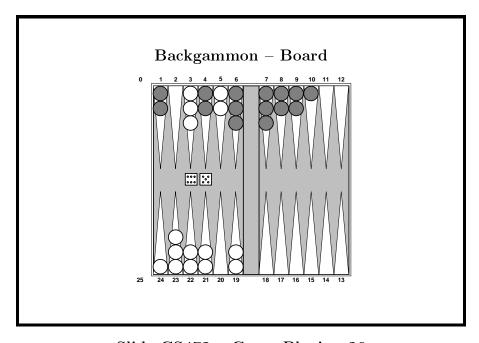
Search Space Size Reductions

Worst Case: In an ordering where worst options evaluated first, all nodes must be examined.

Best Case: If nodes ordered so that the best options are evaluated first, then what?



Slide CS472 – Game Playing 25



Slide CS472 – Game Playing 26

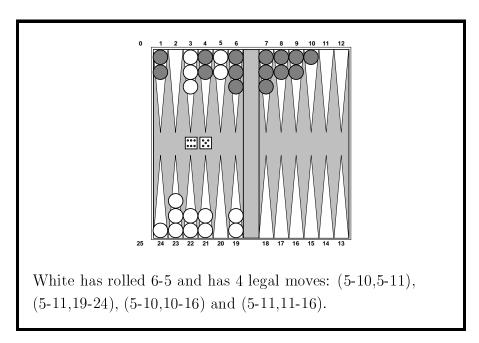
Backgammon - Rules

- Goal: move all of your pieces off the board before your opponent does.
- White moves counterclockwise toward 0.
- Black moves clockwise toward 25.
- A piece can move to any position except one where there are two or more of the opponent's pieces.
- If it moves to a position with one opponent piece, that piece is captured and has to start it's journey from the beginning.

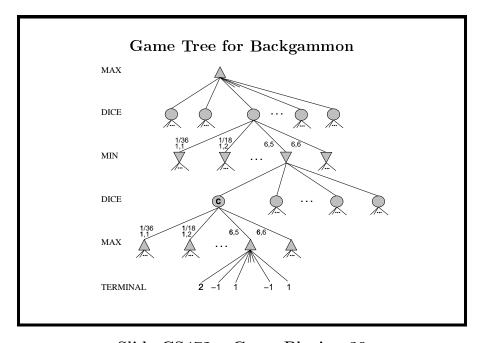
Slide CS472 - Game Playing 27

Backgammon - Rules

- If you roll doubles you take 4 moves (example: roll 5,5, make moves 5,5,5,5).
- Moves can be made by one or two pieces (in the case of doubles by 1, 2, 3 or 4 pieces)
- And a few other rules that concern bearing off and forced moves.



Slide CS472 - Game Playing 29



Slide CS472 – Game Playing 30

State of the Art in Checkers

- 1952: Samuel developed a checkers program that learned its own evaluation function through self play.
- 1992: *Chinook* (J. Schaeffer) wins the U.S. Open. At the world championship, Marion Tinsley beat *Chinook*.

Slide CS472 – Game Playing 31

State of the Art in Backgammon

- 1980: *BKG* using one-ply search and lots of luck defeated the human world champion.
- 1992: Tesauro combines Samuel's learning method with neural networks to develop a new evaluation function, resulting in a program ranked among the top 3 players in the world.

State of the Art in Go

\$2,000,000 prize available for first computer program to defeat a top level player.

Slide CS472 – Game Playing 33

History of Chess in AI

500	legal chess
1200	occasional player
2000	world-ranked
2900	Gary Kasparov

Early 1950's Shannon and Turing both had programs that (barely) played legal chess (500 rank).

1950's Alex Bernstein's system, $(500+\epsilon)$.

1957 Herb Simon claims that a computer chess program would be world chess champion in 10 years...yeah, right.

Slide CS472 – Game Playing 34

- 1966 McCarthy arranges chess match, Stanford vs. Russia. Long, drawn-out match. Russia wins.
- **1967** Richard Greenblatt, MIT. First of the modern chess programs, MacHack (1100 ranking).
- 1968 McCarthy, Michie, Papert bet Levy (rated 2325) that a computer program would beat him within 10 years.
- 1970 ACM started running chess tournaments. Chess 3.0-6 (rated 1400).
- 1973 By 1973...Slate: "It had become too painful even to look at Chess 3.6 any more, let alone work on it."

Slide CS472 – Game Playing 35

- 1973 Chess 4.0: smart plausible-move generator rather than speeding up the search. Improved rapidly when put on faster machines.
- **1976** Chess 4.5: ranking of 2070.
- 1977 Chess 4.5 vs. Levy. Levy wins.
- 1980's Programs depend on search speed rather than knowledge (2300 range).
- 1993 DEEP THOUGHT: Sophisticated special-purpose computer; $\alpha \beta$ search; searches 10 ply; singular extensions; rated about 2600.

Slide CS472 - Game Playing 36

1995 DEEP BLUE: searches 14-ply; considers 100–200 billion positions per move.

1997 DEEP BLUE: first match won against world-champion (Kasparov).

Slide CS472 – Game Playing 37

Concludes "Search"

- Problem Solving as Search
- Uninformed search: DFS / BFS / Uniform cost search time / space complexity size search space: up to approx. 10¹¹ nodes special case: Constraint Satisfaction / CSPs generic framework: variables & constraints backtrack search (DFS); propagation (forward-checking / arc-consistency, variable / value ordering (but incomplete)

Slide CS472 - Game Playing 38

• Informed Search: use heuristic function guide to goal Greedy search

A*search / provably optimal

Search space up to approximately 10^{25}

Local search (incomplete)

 $Greedy \ / \ Hill climbing$

Simulated annealing

Tabu search

 $Genetic\ Algorithms\ /\ Genetic\ Programming$

search space 10^{100} to 10^{1000}

Slide CS472 – Game Playing 39

• Aversary Search / Game Playing minimax

Up to around 10^{10} nodes, 6 - 7 ply in chess.

alpha-beta pruning

Up to around 10^{20} nodes, 14 ply in chess.

provably optimal

Slide CS472 - Game Playing 40

Search and AI

Why such a central role?

A. Basically, because lots of tasks in AI are **intractable**. Search is "only" way to handle them.

Many applications of search, in e.g., Learning / Reasoning / Planning / NLU / Vision

Good thing: much recent progress (10^{30} quite feasible; sometimes up to 10^{1000}). Qualitative difference from only a few years ago!

Slide CS472 – Game Playing 41