CS---4701 Practicum in Artificial Intelligence Fall 2018

Project Proposals

Due Date: Monday, October 15, 6pm on gradescope.com + email pdf to bart.selman@gmail.com

Email from your Cornell account; cc partners; as subject line use:

CS-4701 proposal - netids - brief title of project

Example subject line:

Subject: CS-4701 proposal - bs51, bs52, bs53, bs54, bs55 – Self Learning Tetris

Format: The proposal write-up should contain six components:

1. Title of your project [without title the proposal is incomplete].
2. Names with Cornell netids of team members. Team size: 4 or 5
3. A clear and concise description of what you plan to do. (3 or 4 paragraphs)
4. The general approach you’ll use (e.g., heuristic search, game tree search, learning, inference rules, or neural networks).
5. An explicit, coherent plan for a quantitative and/or qualitative evaluation of your approach and system.
6. A timeline for your implementation and evaluation + team member tasks.

The proposal should not be more than about two pages in length. Teams should have 4 or 5 members.

Proposals can be modified for content in response to my comments/suggestions.

NOTE:

1. Email me at bart.selman@gmail.com if you’d like some feedback on early ideas or are looking for partner. Use as Subject: CS-4701 + key words on issue Or talk to me after CS-4700 lecture (preferred).
 Note that without CS-4701 in the Subject line your email will likely be missed!
2. For projects ideas, see the CS-4701 webpage. Check R&N for chapters related to your project.
3. For the final evaluation, I will have a brief meeting with each group. You will need to present your project with a powerpoint (about 10 to 15 slides) and a brief demo of your software. So, it is important to include a good graphical interface for the demo (if applicable). You will also need to hand in a write-up on the project (between 10 and 20 pages). The write-up should include a clear description of the overall goals of the project, the software written, and the results an evaluation of your system with various observations on the AI components and their performance. For the latter aspect, you should think about ways to study your system. For example, in a project on game playing, you should have your program play itself or variations of itself (add some randomness to move selection to avoid playing the same games over and over). You can evaluate how well various heuristics perform and the effect of increasing search depth. In a learning related project, you can consider the effect of training data size and the complexity of the learned concept or neural net. Don’t hesitate to drop me an email if you have questions about these issues.