Problem 1: Probability

A (5 points): Consider a real-valued random variable X that follows a uniform distribution between a and b. What is the mean and standard deviation of X?

Solution: $(a + b)/2$ and $\sqrt{(a - b)^2/12}$

B (5 points): Consider a two-player dice game. On each round:

- Player 1 rolls a single 6-sided die and adds 1 to the result.
- Player 2 rolls 2 6-sided dice and takes the maximum of the two.
- Whoever has the lower number pays the other 1. (In case of a tie no money is paid in either direction.)

Each player starts with 100. After playing 100 times, what is the expected value of how much money each player winds up with?

Using a brute force method, enumerate the different rolls of Player 1 and then counting the expected number of wins vs losses out of the 36 possible roles of Player 2. The expected loss for Player 2/win for Player 1 winds up being about 0.00463, so multiple by 100 to get Player 1 is expect to win $100.46 and Player 2 is expected to get $99.54
C (5 points): Imagine that you have a bag containing 100 balls of which 20 are green and 80 are red. 90% of the green balls have a stripe, whereas 30% of the red balls are without a stripe. If you pull out one ball and it has a stripe, what is the probability that it is green?

\[
Pr(green|\text{stripe}) = \frac{Pr(\text{stripe}|green) \cdot Pr(green)}{Pr(\text{stripe})} = \frac{0.9 \cdot 0.2}{0.74} = 0.24
\]

\[
\text{Problem 2: Calculus}
\]

A (5 points): Consider the function \(f(x) = \frac{1}{1+e^{-w \cdot x}} \) where \(w = (w_0, ..., w_n) \) and \(x = (x_0, ..., x_n) \). What is \(\frac{\partial f}{\partial w_i}(x) \)?

\[
\frac{\partial f}{\partial w_i}(x) = \frac{x_i \cdot e^{-w \cdot x}}{(1 + e^{-w \cdot x})^2}
\]

B (5 points): For what value(s) of \(x \) is \(f(x, y) = 2x^2 + 4x + y^2 \) is \(f(x, y) \) minimized?

\(x = -1 \)

\[
\text{Problem 3: BST Traversals}
\]

Consider the following binary tree:

\[
\text{Problem 4: Complexity of BST}
\]

Consider a binary search tree \(T \) containing \(n \) nodes.

A (4 points): What is the worst-case number of comparisons that are made to answer whether a particular item is in \(T \)? Give the exact formula.

\[
\text{Solution: worst case } n
\]
B (2 points): Give the “big O” notation answer for part a.
\[O(n) \]

C (4 points): What is the worst-case number of comparisons that are made to answer whether a particular item is in T if T is balanced? Give the exact formula.

The depth of the tree will be \[\lceil \log_2(n + 1) \rceil \], and this is the worst case number of comparisons.

D (2 points): Give the “big O” notation answer for part c. \[O(\log_2(n)) \]

\begin{center}{\bf Problem 5: First Order Logic} (10 points)\end{center}

Answer True or False for the following statements:

A (2 points): False \(\models \) True
 (Vacuously) True

B (2 points): True \(\models \) False
 False

C (2 points): \[[(A \land B) \Rightarrow C] \models [(A \Rightarrow C) \lor (B \Rightarrow C)] \]
 True

D (2 points): \[[(A \lor B) \land (\neg C \lor \neg D \lor E)] \models (A \lor B) \]
 True

E (2 points): \[[(A \lor B) \land \neg(A \Rightarrow B)] \] is satisfiable
 True (A True and B False)