CS 4700: Foundations of Artificial Intelligence

Spring 2020 Prof. Haym Hirsh

Lecture 6 February 3, 2020

Reminder: Technology Policy

No technology except for first four rows of left and right sides

Jupyter Notebooks

"Primer": Friday 5pm in Gates G01

"Informed" Search

To formulate a problem:

- States: S
- Operators: Ops
- Initial state
- Goal condition: goal(s)
- Heuristic Evaluation Function $f(s): S \to \mathbb{R}$ (usually ≥ 0)
 - f is an estimate of the merit of s
 - Typically $f(s_1) < f(s_2)$ means s_1 is "better" than s_2

A* Search

Best-first search using

$$f(s) = g(s) + h(s)$$

g(s) = sum of costs from initial state to s h(s) = estimate of cost from s to nearest goal

A* Search

```
Initial call: A*(initialstate,ops,{},{})
A*(s,ops,open,closed) =
         If goal(s) Then return(s);
         Else If not(s \in closed)
            Then successors \leftarrow {}; add(s,closed);
                   For each o \in ops that applies to s add apply(o,s) to successors
                   For each s \in successors
                            If s \in \text{open and } g(s) of current path is less, update g(s) in open
                            Else If s \in \text{closed} and g(s) of current path is less, add s to open w/ new g(s)
                            Else If s ∉ open and s ∉ closed, add s to open
         If not(empty(open))
                   s' \leftarrow \operatorname{argmin}(f(s));
                         s \in open
                   open \leftarrow remove(s',open);
                  A*(s',ops,open,closed)
            Else return(FAIL)
```

- If
 - search space is a finite graph and
 - all operator costs are *positive*
- Then
 - A* is guaranteed to terminate and
 - if there is a solution, A* will find a solution (not necessarily an optimal one)

- If
 - search space is an *infinite* graph (but branching factor is finite) and
 - all operator costs are positive and are never less than some number &
 (in other words, they cannot get arbitrarily close to 0)
- Then
 - if there is a solution, A* will terminate with a solution (not necessarily an optimal one)

(no guarantee of termination if there is no solution)

- If, in addition,
 - h(s) is admissible (for all states s, $0 \le h(s) \le h^*(s)$)
- Then
 - If A* terminates with a solution it will be optimal

- If, in addition,
 - h(s) is consistent (for all states s, h(s) ≤ h(apply(a,s)) + cost(apply(a,s))
- Then
 - h(s) is admissible,
 - the first path found to any state is guaranteed to have the lowest cost (do not need to check for this in the algorithm), and
 - A* is "optimal" no other algorithm using the same h(s) and the same tiebreaking rules will expand fewer nodes than A*

- If
 - the search space is a tree,
 - there is a single goal state, and
 - for all states s, |h*(s) h(s)| = O(log(h*(s))
 (the error of h(s) is never more than a logarithmic factor of h*(s))
- Then
 - A* runs in time polynomial in b (branching factor)

And many others

(Extremely widely used, so well-understood)

Weighted A*:

- If
 - h(s) is admissible and
 - A* is used with $h'(s) = c \times h(s)$ where c > 1
- Then
 - Any goal state that A* terminates with will have cost no more than c times the cost of an optimal solution

IDA*:

- Use cost-bounded depth-first search with h(initial state) as the bound
- Any time a successor is greater than the bound don't expand it
 - But store the lowest cost C of any such state that you reach that exceeds the cost bound
- If you terminate without a goal state run cost-bounded depth-first search with depth bound C

(= Depth-first search emulation of A* search)

SMA*:

- A* search with a memory bound
- If you would generate a node but don't have space to add it to Open, remove from open the node s on Open with greatest f(s) but keep track of its parent s' and the cost of the removed node f(s)
- If you reach a node on Open whose cost is worse than this value, you re-expand s'

And many others

(Extremely widely used, so explored)

Search Methods Thus Far

DFS

BFS

IDS

Best-First/A*

Search Methods Thus Far

DFS

BFS

IDS

Best-First/A*

Focus is on optimality

What if We're OK with Suboptimal Solutions?

What if We're OK with Suboptimal Solutions?

(A* variants, but what else?)

Idea 1: Beam Search

Best-first search, but only keep the k best on Open

k is called the "beam width"

Search Algorithm Template

```
Initial call: Search(initialstate,ops,{},{})
Search(s,ops,open,closed) =
         If goal(s) Then return(s);
         Else If not(s \in closed)
           Then
                  successors \leftarrow {}; add(s,closed);
                  For each o \in ops that applies to s
                           add apply(o,s) to successors
                  open \leftarrow add successors to open;
         If not(empty(open))
                  s' \leftarrow select(open);
                  open \leftarrow remove(s',open);
                  search(s',ops,open,closed)
            Else return(FAIL)
```

Search Algorithm Template

```
Initial call: Search(initialstate,ops,{},{})
Search(s,ops,open,closed) =
         If goal(s) Then return(s);
         Else If not(s \in closed)
           Then
                  successors \leftarrow {}; add(s,closed);
                  For each o \in ops that applies to s
                           add apply(o,s) to successors
                  open \leftarrow add successors to open;
         If not(empty(open))
                  s' \leftarrow select(open);
                  open \leftarrow remove(s',open);
                  search(s',ops,open,closed)
            Else return(FAIL)
```

Beam Search

```
Initial call: BeamSearch(initialstate,ops,{},{},width)
BeamSearch(s,ops,open,closed) =
        If goal(s) Then return(s);
        Else If not(s \in closed)
           Then
                  successors \leftarrow {}; add(s,closed);
                  For each o \in ops that applies to s
                           add apply(o,s) to successors
                  open \leftarrow add successors to open;
        open \leftarrow top-k_f(open, width)
        If not(empty(open))
                 s' \leftarrow best_f(open);
                  open \leftarrow remove(s',open);
                  BeamSearch(s',ops,open,closed)
            Else return(FAIL)
```

Beam Search

```
Initial call: BeamSearch(initialstate,ops,{},{},width)
BeamSearch(s,ops,open,closed) =
        If goal(s) Then return(s);
        Else If not(s \in closed)
           Then
                  successors \leftarrow {}; add(s,closed);
                  For each o \in ops that applies to s
                           add apply(o,s) to successors
                  open \leftarrow add successors to open;
        open \leftarrow best-k<sub>f</sub>(open,width) best-k<sub>f</sub>(x,k) = the k best items on x according to f
         If not(empty(open))
                 s' \leftarrow best_f(open);
                  open \leftarrow remove(s',open);
                   BeamSearch(s',ops,open,closed)
            Else return(FAIL)
```

Beam Search

Lose the guarantees, gain a bounded memory size, simple algorithm

Loosely, beam search with width 1

Loosely, beam search with width 1

(For historical reasons seeking to maximize rather than minimize, hence the name hill *climbing*)

Loosely, beam search with width 1

(For historical reasons seeking to maximize rather than minimize, hence the name hill *climbing*)

(Just to confuse things, it includes gradient descent, where you're minimizing)

Loosely, beam search with width 1

(For historical reasons seeking to maximize rather than minimize, hence the name hill *climbing*)

(Just to confuse things, it includes gradient descent, where you're minimizing)

(Just to confuse things even further textbook example minimizes f)

Hill Climbing Example: 8 Queens

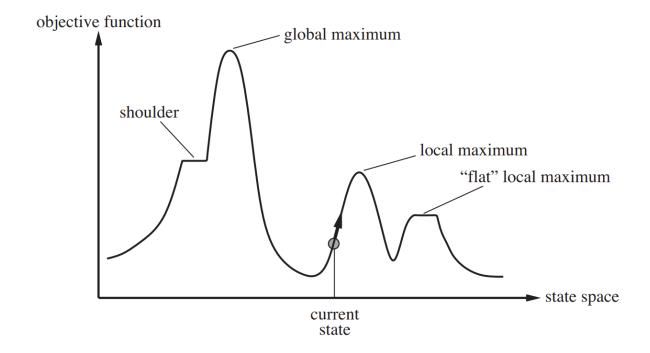
- Initial state = random placement of 8 queens, 1 per column
- Operators = pick a column and move its queen
- f(s) = # of attacked queens
- Want f(s) = 0

Hill Climbing

```
\begin{aligned} & \text{current} \leftarrow s; \\ & \text{loop} \\ & \text{new} \leftarrow \text{lowest-valued successor of } s; \\ & \text{if } f(\text{new}) < f(s) \\ & \text{then } \text{current} \leftarrow \text{new} \\ & \text{else } \text{return}(\text{current}) \end{aligned} \end{aligned}
```

Problems for Hill Climbing

- Local optima
- Plateau problem: no direction looks good (flat vs shoulder)
- Ridges: increases not aligned with axes

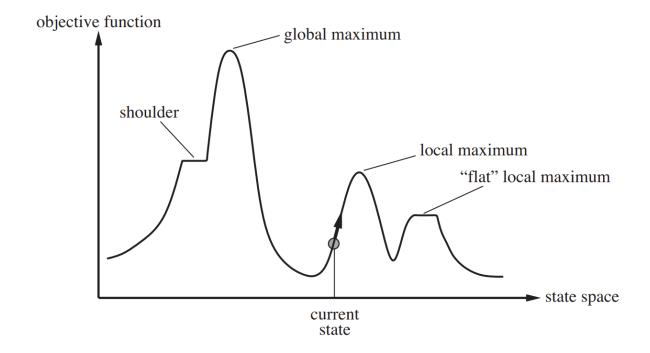


Hill Climbing

This is *not* ≤

Problems for Hill Climbing

- Local optima
- Plateau problem: no direction looks good (flat vs shoulder)
- Ridges: increases not aligned with axes



Hill Climbing Variants

- Stochastic hill climbing:
 - Pick successor of a state probabilistically "proportional" to f values of successors
 - Can use a weighting scheme where early on you do this, but as you progress you become more and more likely to pick the best successor
 - Slower than pure hill-climbing, but can find better solutions, such as due to ridges

- Sideways moves:
 - Allow the algorithm to pick a successor with equal value if there is none with a better value
 - Do this at most some bounded number of times in a row
 - Good for plateaus

- First-choice hill-climbing:
 - Generate successors, stop and move ahead with the first successor that's better than the current state
 - Good for problems with high branching factor

- Random restart:
 - If initial state is random or there are often ties that are broken randomly you can rerun hill climbing with different starting states
 - Good for local optima

Combinations of the above

• Usually thought of as a tool kit and you try various options

Simulated Annealing

Stochastic Hill Climbing Search with a small, decreasing probability of doing a bad move

Simulated Annealing

Stochastic Hill Climbing Search with a small, decreasing probability of doing a bad move

Intuition: To avoid getting stuck in local optima, let yourself wander a little, less so as time progresses

Vocabulary: the farther into the search you go the lower the "temperature"

Sample Simulated Annealing Algorithm

```
SA(s,ops):
       current \leftarrow s; T \leftarrow initial T value; [For example, T=1]
        loop
               op ← random element of ops;
               new ← apply(op,current);
               delta \leftarrow f(new) - f(current);
               if delta < 0 then current \leftarrow new
               else with probability e^{-T} current \leftarrow new;
                            [For example, T = \frac{1}{\text{iteration#}}]
               update T
       until <stopping criterion> [For example, some max # of iterations]
```

- States: Assume have a structured representation
 - Example: N Queens (position queen 1, ..., position queen N) [n-tuples]

- States: Assume have a structured representation
 - Example: N Queens (position queen 1, ..., position queen N) [n-tuples]
- Initial state: a set ("population") of random states
 - Example: a bunch of boards with N random queens

- States: Assume have a structured representation
 - Example: N Queens (position queen 1, ..., position queen N) [n-tuples]
- Initial state: a set ("population") of random states
 - Example: a bunch of boards with N random queens
- Operators: Apply generically, not (in its purist form) domain specific
 - Mutate: Perturb a state
 - Example: Change a queen position by 1
 - Crossover: Take two states and combine elements of both
 - Example: Take two N Queens boards, take k from one and N-k from the other

- States: Assume have a structured representation
 - Example: N Queens (position queen 1, ..., position queen N) [n-tuples]
- Initial state: a set ("population") of random states
 - Example: a bunch of boards with N random queens
- Operators: Apply generically, not (in its purist form) domain specific
 - Mutate: Perturb a state
 - Example: Change a queen position by 1
 - Crossover: Take two states and combine elements of both
 - Example: Take two N Queens boards, take k from one and N-k from the other
- f(s): "fitness function"

Algorithm sketch:

- Create an initial population of individuals (states) [population size]
- On each generation (iteration) create a new population by a combination of
 - Crossover:
 - Take two elements of the population biased by fitness function
 - Create a new individual (state) by taking pieces of each
 - Mutation:
 - Take an element of the population biased by fitness function
 - Create a new individual (state) by perturbing it

There are MANY variants

There are MANY variants

One that's distinctive enough to get its own mention:

Genetic programming:

- States are programs in a structured language
- Crossover and mutation create new programs from old ones