CS 4700: Foundations of Artificial Intelligence

Spring 2020 Prof. Haym Hirsh

Lecture 31 April 27, 2020

Mock Grades Out

- 1. Based on grades thus far
- 2. Extrapolated with median in each category if currently below median

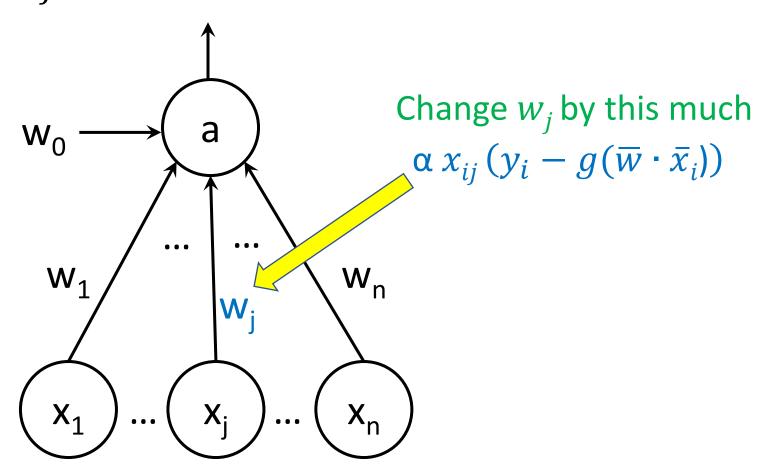
This is not a contract, it's to help you with S/U (Think +/- ~half a grade)

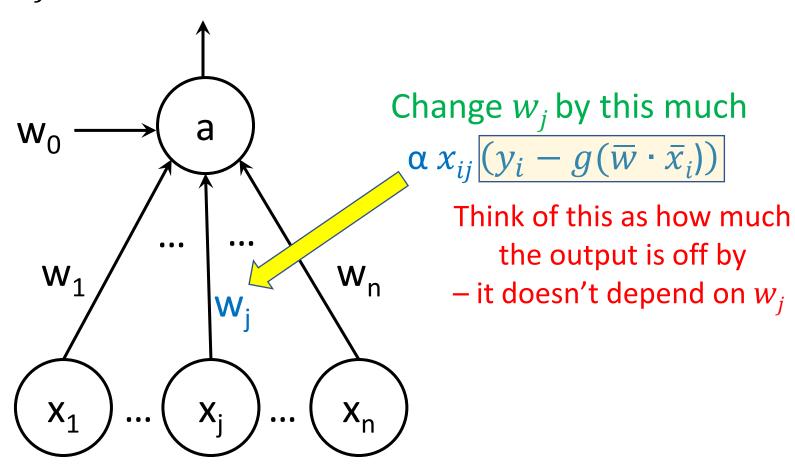
Only time

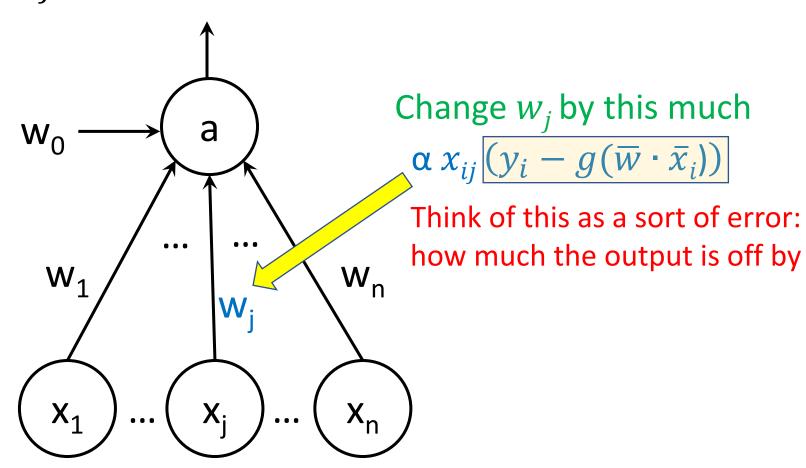
COVID-19

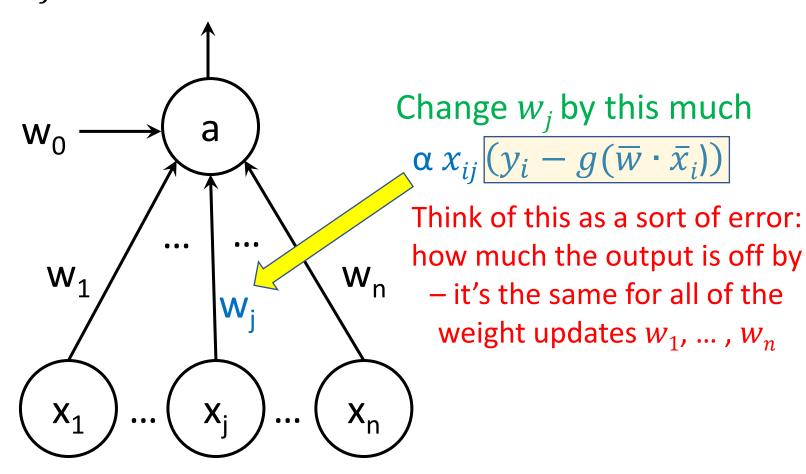
Self-assess your status

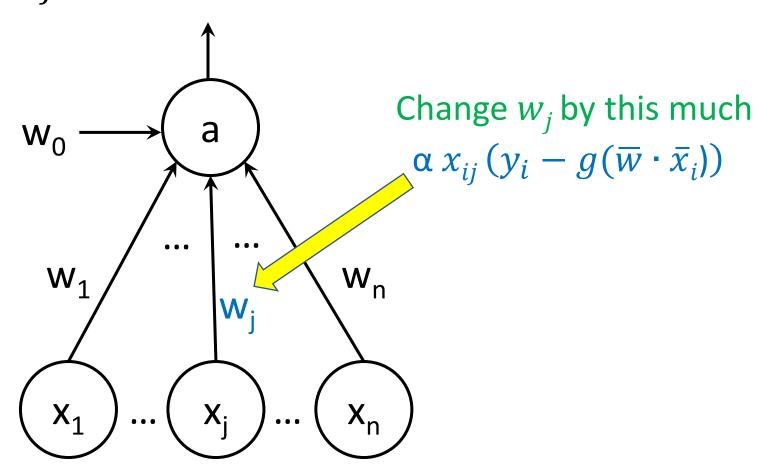
Please get in touch if life is intruding in your studies

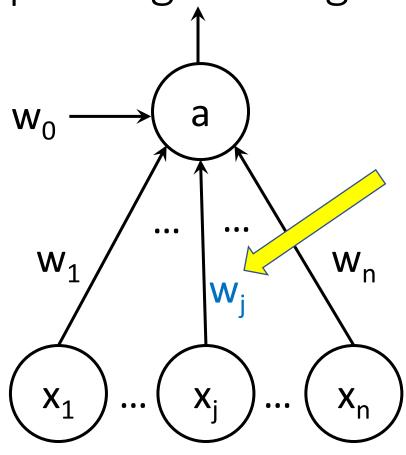


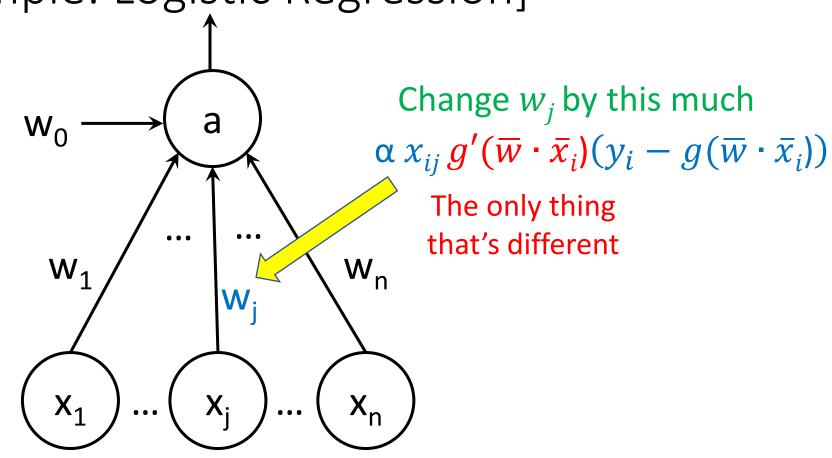


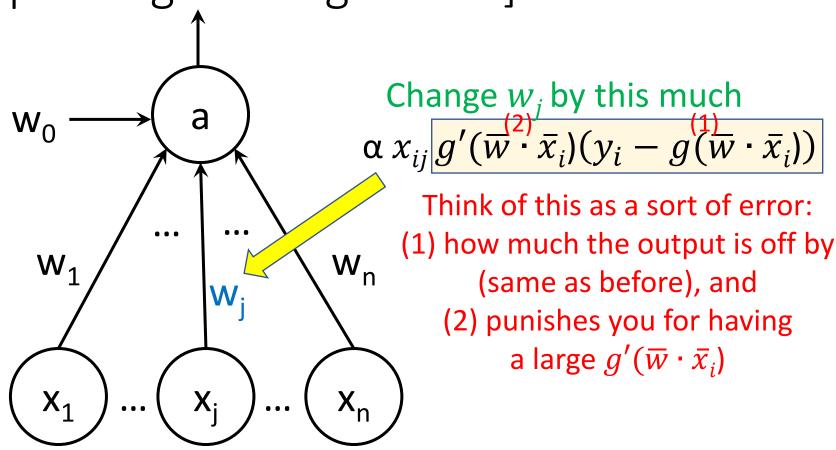


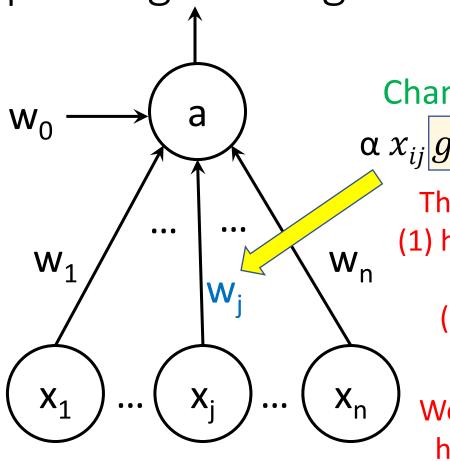












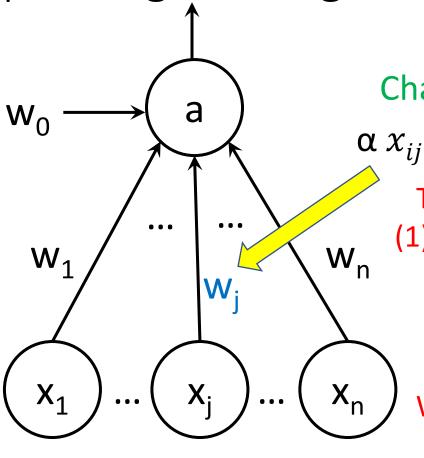
Change w_i by this much

$$x_{ij}g'(\overline{w}^{(2)},\overline{x}_i)(y_i-g(\overline{w}\cdot\overline{x}_i))$$

Think of this as a sort of error:

(1) how much the output is off by (same as before), and (2) punishes you for having a large $g'(\overline{w} \cdot \overline{x}_i)$

We want similar values of \bar{x} to have similar $g(\bar{w} \cdot \bar{x})$ values



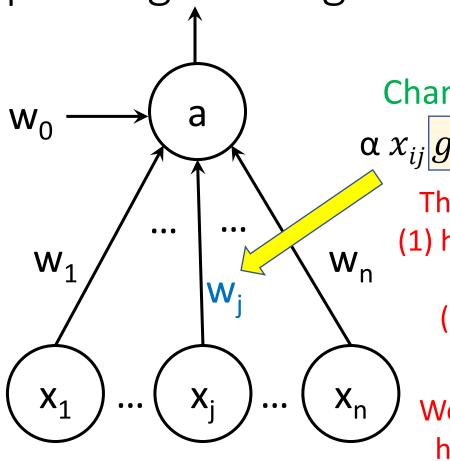
Change w_i by this much

$$x_{ij}g'(\overline{w}^{(2)},\overline{x}_i)(y_i-g(\overline{w}\cdot\overline{x}_i))$$

Think of this as a sort of error:

(1) how much the output is off by (same as before), and
(2) punishes you for having a large g'(w̄ · x̄_i)

We want similar values of \bar{x} to have similar $g(\bar{w} \cdot \bar{x})$ values (because two similar things should likely have the same label)



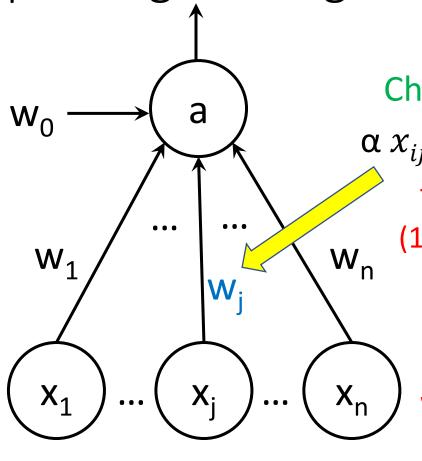
Change w_i by this much

$$x_{ij}g'(\overline{w}^{(2)},\overline{x}_i)(y_i-g(\overline{w}\cdot\overline{x}_i))$$

Think of this as a sort of error:
(1) how much the output is off by
(same as before), and
(2) punishes you for having

a large $g'(\overline{w} \cdot \overline{x}_i)$

We want similar values of \bar{x} to have similar $g(\bar{w} \cdot \bar{x})$ values



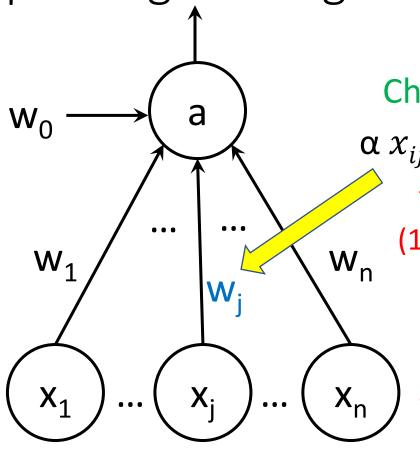
Change w_i by this much

$$x_{ij}g'(\overline{w}^{(2)},\overline{x}_i)(y_i-g(\overline{w}\cdot\overline{x}_i))$$

Think of this as a sort of error:

(1) how much the output is off by (same as before), and
(2) punishes you for having a large g'(w̄·x̄_i)

We want similar values of \bar{x} to have similar $g(\bar{w} \cdot \bar{x})$ values \Rightarrow want $g(\bar{w} \cdot \bar{x}_i)$ to be locally flat



Change w_i by this much

$$\alpha x_{ij} g'(\overline{w}^{(2)}, \overline{x}_i)(y_i - g(\overline{w} \cdot \overline{x}_i))$$

Think of this as a sort of error:

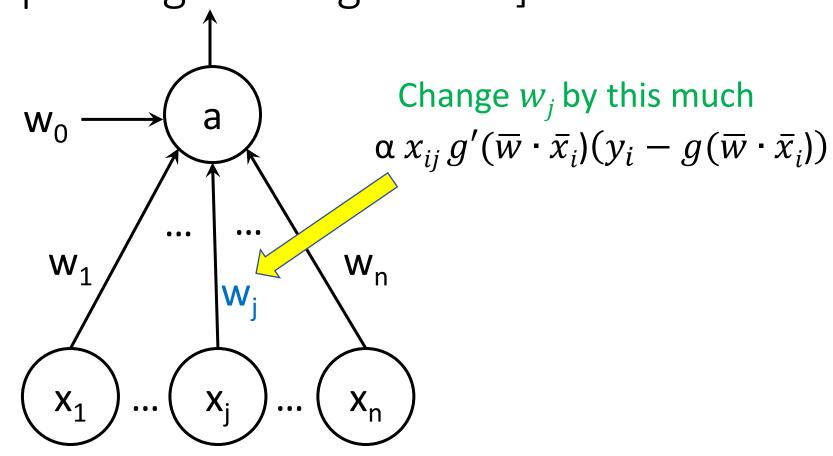
(1) how much the output is off by (same as before), and

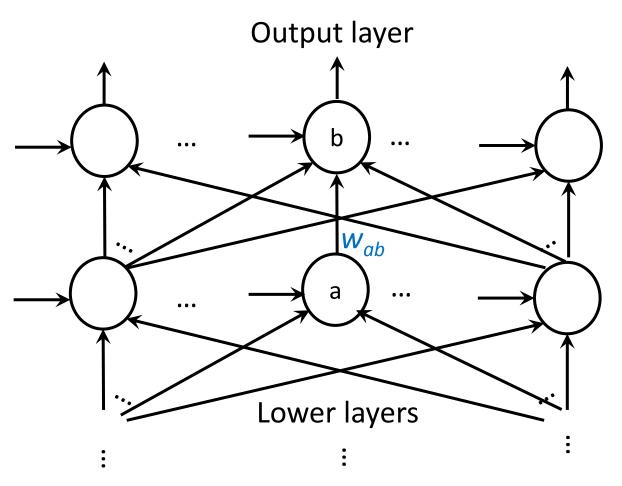
(2) punishes you for having a large $g'(\overline{w} \cdot \overline{x}_i)$

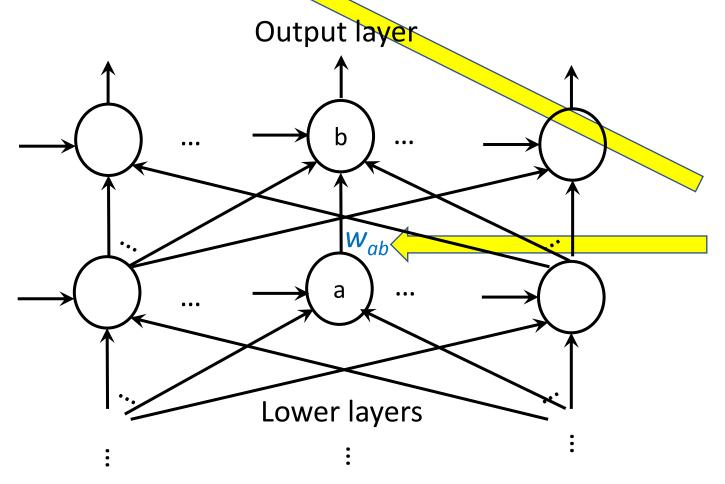
We want similar values of \bar{x} to have similar $g(\bar{w} \cdot \bar{x})$ values

 \Rightarrow want $g(\overline{w} \cdot \overline{x}_i)$ to be locally flat

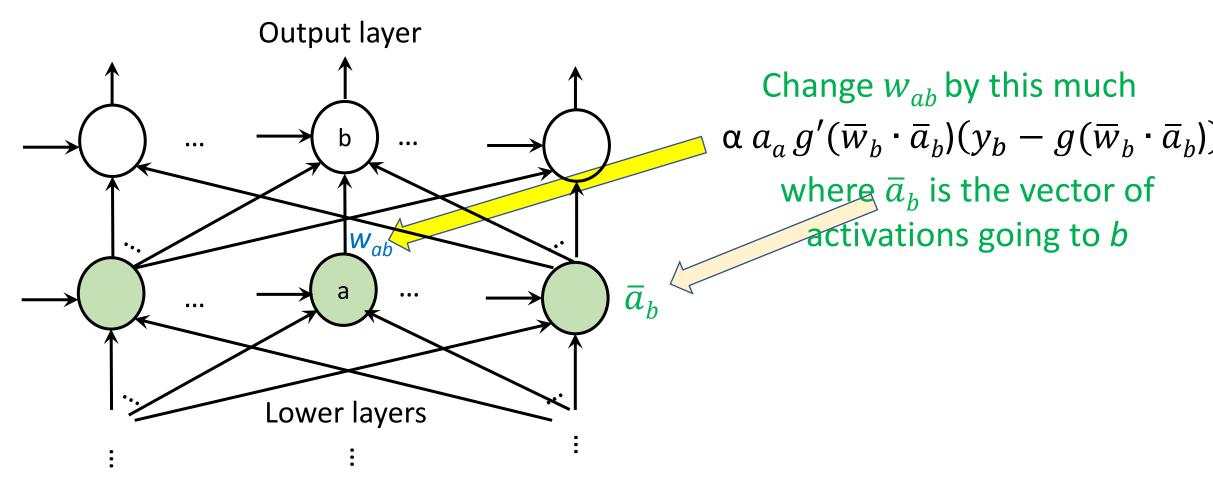
 \Rightarrow want $g'(\overline{w} \cdot \overline{x}_i)$ to be small

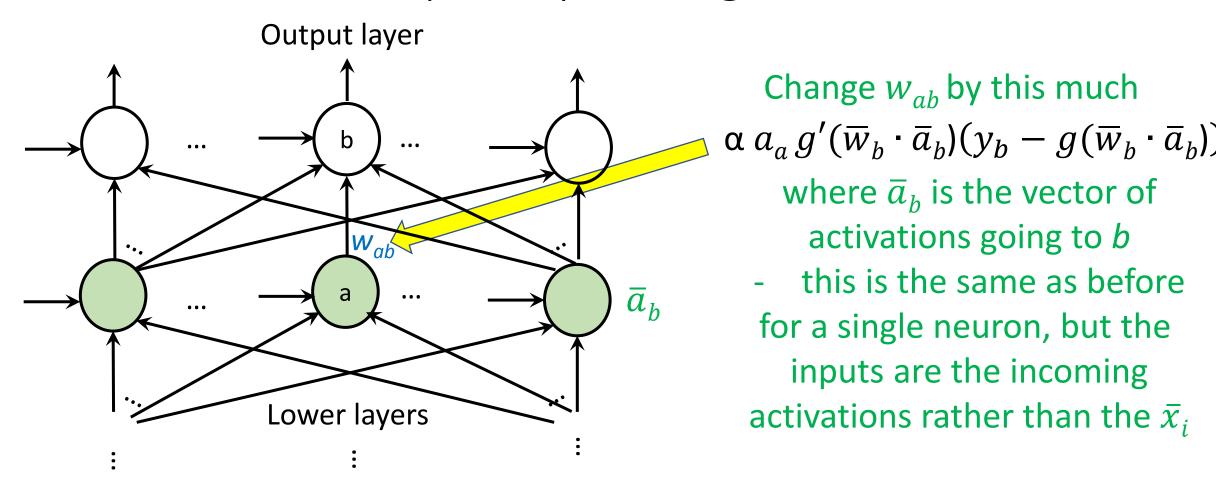


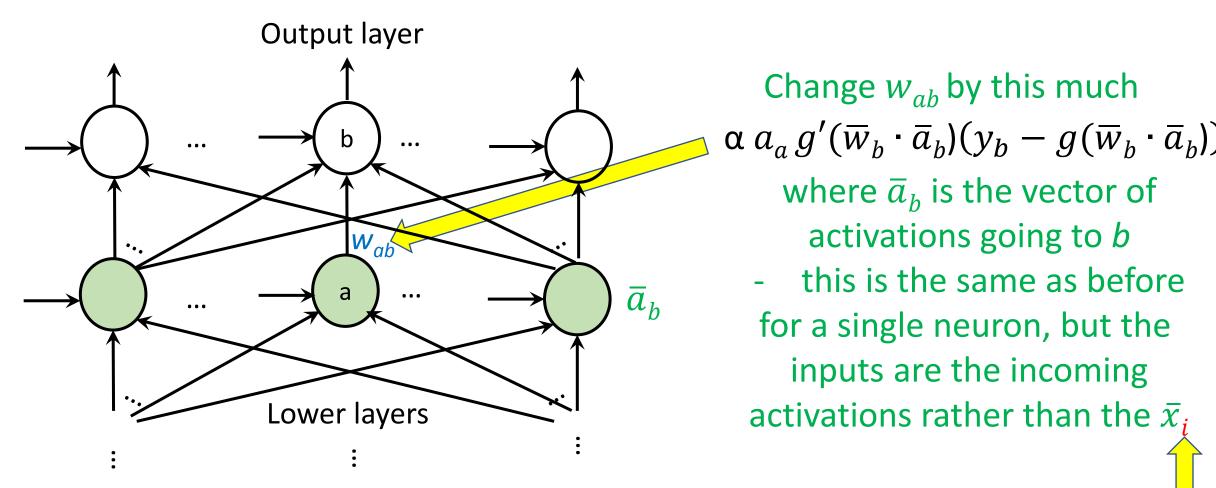




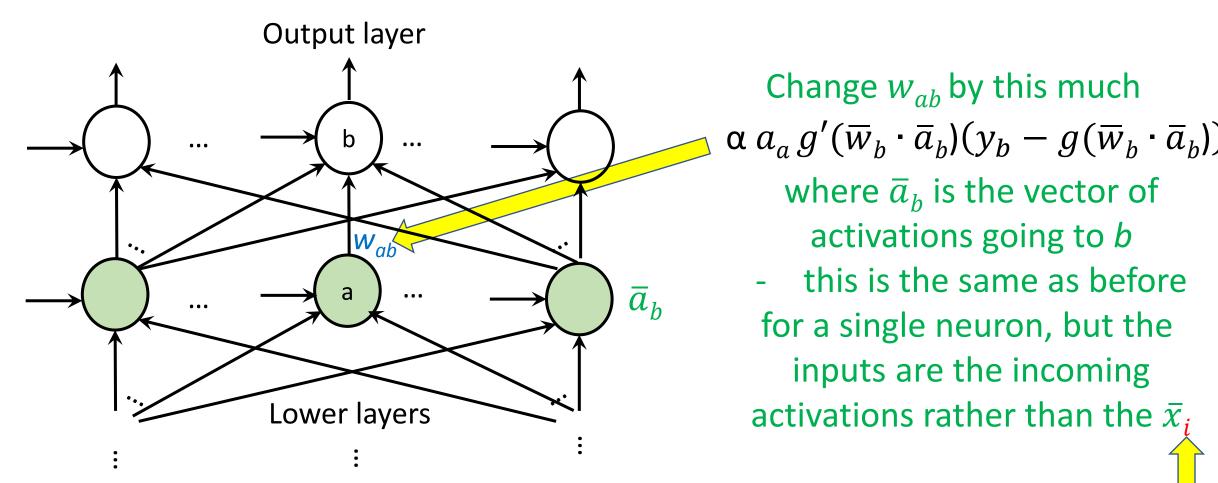
Intentionally using a and b so that we don't get confused by the use of i's and j's in different places for different things



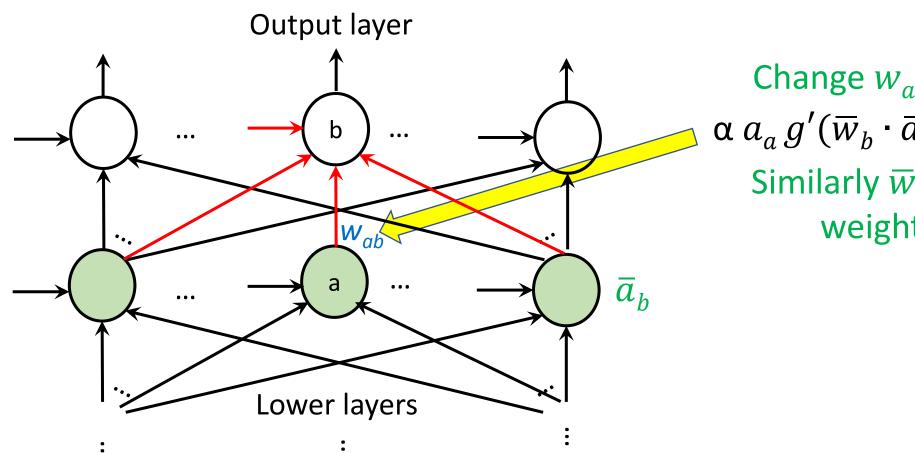




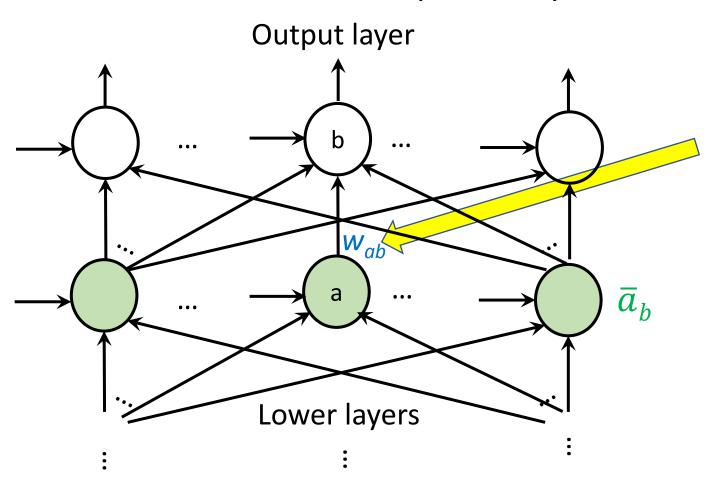
Up until now we've included an index i referring to the example we're currently doing an update for



Up until now we've included an index i referring to the example we're currently doing an update for Moving ahead I'm leaving that implicit, otherwise we'd have another index, i, on all the \bar{a}_b , a_a , and y_b , etc.



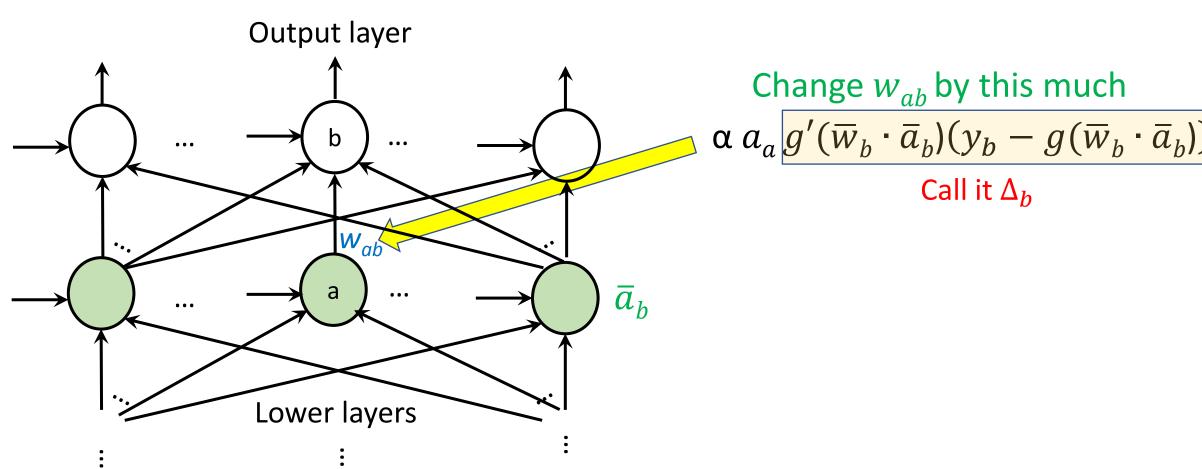
Change w_{ab} by this much $\alpha \, a_a \, g'(\overline{w}_b \cdot \overline{a}_b)(y_b - g(\overline{w}_b \cdot \overline{a}_b))$ Similarly \overline{w}_b is the vector of weights going to b

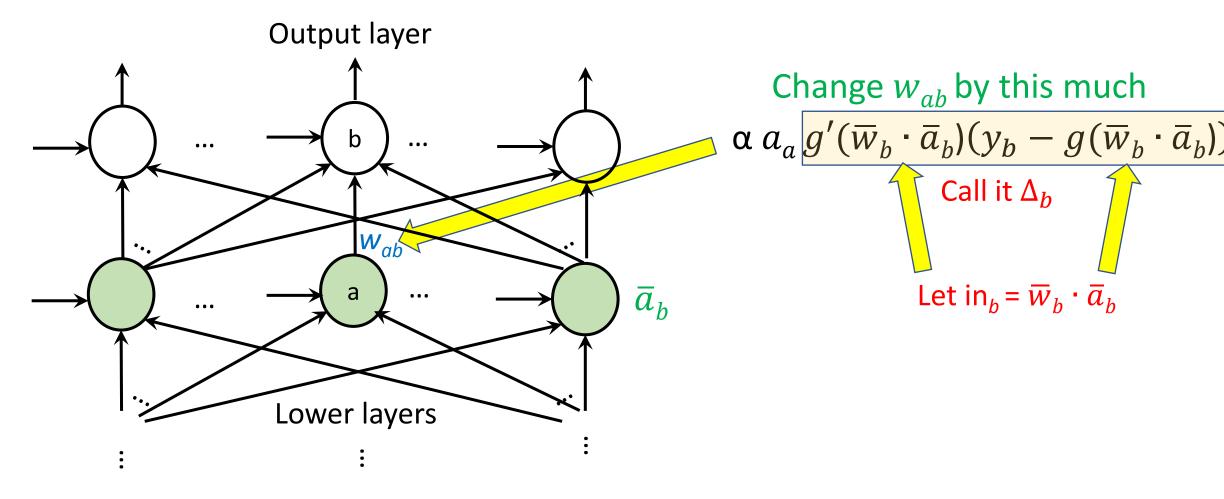


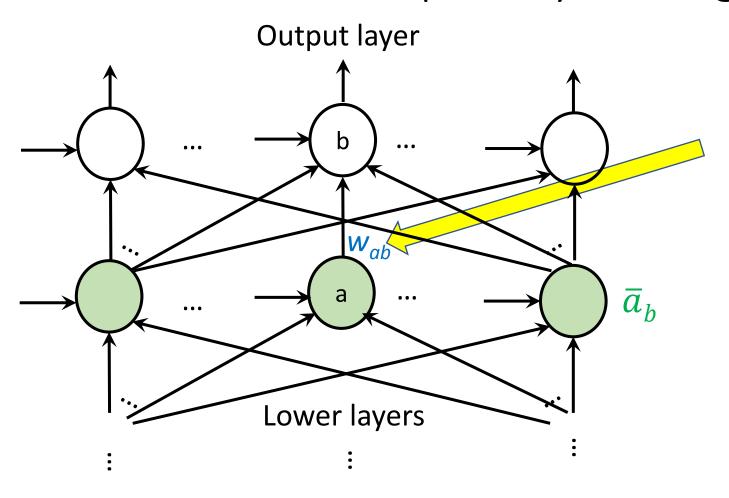
Change w_{ab} by this much

$$\alpha a_a g'(\overline{w}_b \cdot \overline{a}_b)(y_b - g(\overline{w}_b \cdot \overline{a}_b))$$

This is the same as before



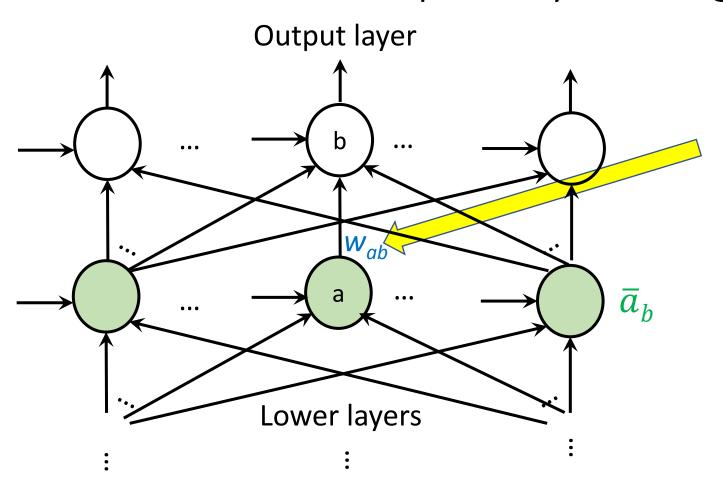




Rewrite as

Change w_{ab} by this much $\alpha a_a \Delta_b$ $\Delta_b = g'(\text{in}_b)(y_b - g(\text{in}_b))$

The first step of error backpropagation just computes Δ_b for the output layer

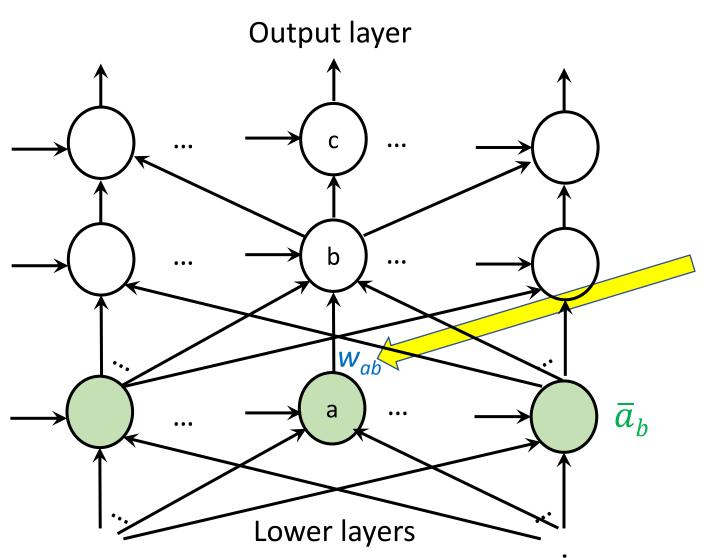


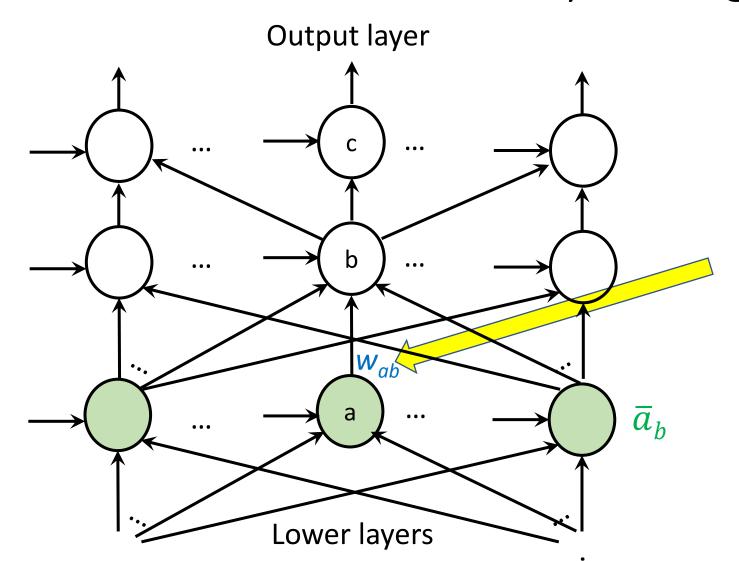
Rewrite as

Change w_{ab} by this much $\alpha a_a \Delta_b$ $\Delta_b = g'(\text{in}_b)(y_b - g(\text{in}_b))$

The first step of error backpropagation just computes Δ_b for the output layer

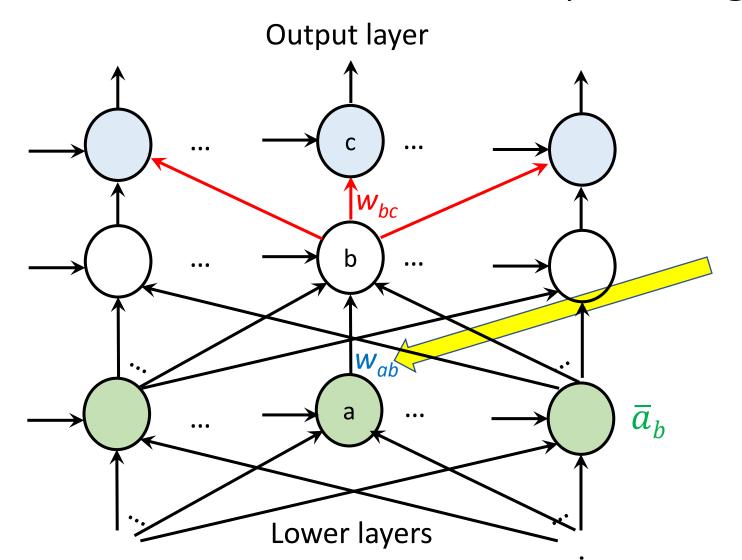
(in_b and g(in_b) are computed during the feedforward step)





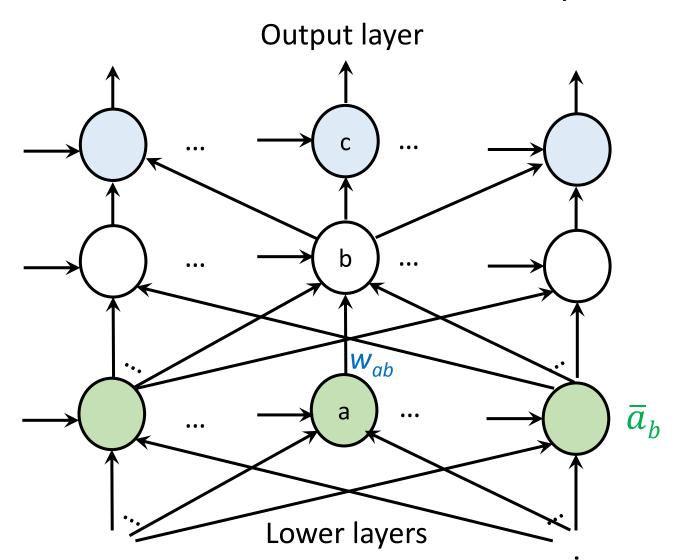
Keep this part the same Change w_{ab} by this much $\alpha a_a \Delta_b$

but change how we calculate Δ_b



Keep this part the same Change w_{ab} by this much $\alpha \ \alpha_a \ \Delta_b$

but change how we calculate Δ_b It will be based on the w_{bc} 's and Δ_c 's for every node c that b goes to



Change w_{ab} by this much $\alpha a_a \Delta_b$

Once you have Δ_b for every node you can change each w_{ab} by $\alpha \ a_a \Delta_b$ in one final loop

Backprop Algorithm

```
Backprop(D,W):
    Initialize all weights w_{ij} to small random numbers
    Repeat
         For each example (\bar{x}, \bar{y})
                       Feedforward:
                            For layers m=2 to k
                               For each node j in layer m: in_j \leftarrow \sum_i w_{ij}a_i \quad a_j \leftarrow g(in_j)
                       Backpropagation:
                                                                         edge (i,i)
                            For each node j in output layer L_k: \Delta_i \leftarrow g'(in_i)(y_i - a_i)
                            For layers m=k-1 down to 2
                               For each node i in L_m: \Delta_i \leftarrow g'(in_i) \sum_i w_{ij}\Delta_j
                                                                               edge(i,i)
                            For each weight w_{ij}: w_{ij} \leftarrow w_{ij} + \alpha a_i \Delta_i
         Reorder the data
```

Until <stopping criterion>

34

Additional Ideas in Practice

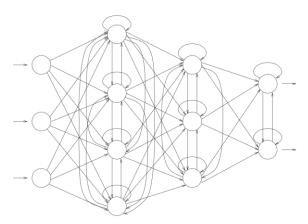
- "Mini-batch" updates:
 - Divide data into "batches", compute changes to w_{ij} across each batch
- Other activation functions:
 - Rectifier Linear Unit (ReLU) activation function: g(z) = max(0,z)
 - Softmax: $\frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$

Additional Ideas in Practice

How many layers, how many neurons in each level, how connected, Evolving repertoire of approaches, for example:

 Recurrent neural networks: common for problems with sequential data, time series data, etc.

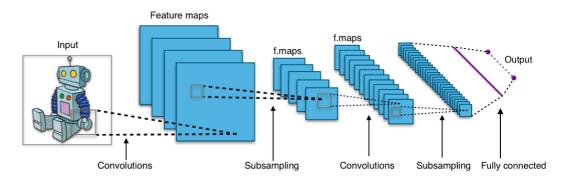
Example:



Tutschku, K., 1995. Recurrent multilayer perceptrons for identification and control: The road to applications.

 Convolutional neural network: common for problems involving image analysis

Example:



https://en.wikipedia.org/wiki/Convolutional_neural_network#/media/File:Typical_cnn.png

Supervised Learning: Naïve Bayes

Probabilistic approach to supervised learning

Supervised Learning: Naïve Bayes

- Basic concept:
 - Problem:
 - Given data D = $\{(\bar{x}_i, y_i)\}$ for $1 \le i \le N$
 - Label new item \bar{x}_{test}
 - Solution:
 - Assign label

$$\underset{c \in C}{\operatorname{argmax}} P(c | x_{test,1} = v_{1,l_1}, x_{test,2} = v_{2,l_{2,}}, \dots, x_{test,n} = v_{n,l_n})$$

[this says: whichever c is most probable for \bar{x}_{test}]

• When clear from context, will write:

$$\underset{c \in C}{\operatorname{argmax}} P(c|x_{test,1}, \dots, x_{test,n})$$