Backup plans:

If this Zoom meeting ends prematurely, five-minute break, check Piazza
Other announcements:

Please fill in survey on Canvas
Other announcements:

First quiz: Thu Apr 9 12:00pm
Topic: Uninformed search
24 hour window for submission
Further details out shortly after lecture
Next Karma Lecture

Thursday, at 11:40am
https://cornell.zoom.us/j/276979194

“Efficient Machine Learning via Data Summarization”
Baharan Mirzasoleiman, Stanford University
Multi-Armed Bandit

What strategy do I use to pick a sequence of a_i?
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

• Pick the arm with largest UCB(M_i) instead of \hat{R}_i

$$UCB(M_i) = \hat{R}_i + \frac{g(N)}{\sqrt{N_i}}$$

where

\hat{R}_i = average reward for i so far
N = total number of pulls made so far
N_i = total number of pulls of M_i so far

$$g(N) = c\sqrt{\ln N} \quad g(N) = \sqrt{2 \log (1 + N \log^2 N)}$$

$g(N)$ should go up more slowly than $\sqrt{N_i}$
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

- Pick the arm with largest UCB(M_i) instead of \hat{R}_i

$$\text{UCB}(M_i) = \hat{R}_i + \frac{g(N)}{\sqrt{N_i}}$$

where

- \hat{R}_i = average reward for i so far = $\frac{\text{Sum}_i}{N_i}$
- N = total number of pulls made so far
- N_i = total number of pulls of M_i so far

$$g(N) = c\sqrt{\ln N} \quad g(N) = \sqrt{2 \log (1 + N \log^2 N)}$$

$g(N)$ should go up more slowly than $\sqrt{N_i}$
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Algorithm:

For i ← 1 to n { Sum_i ← R(arm_i); N_i ← 1 }; N ← n /* Initialization */

Loop Forever

best ← argmax \[\frac{\text{Sum}_i}{N_i} + \frac{g(N)}{\sqrt{N_i}} \] \[1 \leq i \leq n\]

pull arm a_{best} and get reward r

\text{Sum}_{\text{best}} ← \text{Sum}_{\text{best}} + r; \quad N_{\text{best}} ← N_{\text{best}} + 1; \quad N ← N+1
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Algorithm:

For $i \leftarrow 1$ to n
{ $\text{Sum}_i \leftarrow R(\text{arm}_i)$; $N_i \leftarrow 1$}; $N \leftarrow n$ /* Initialization */

Loop Forever

$\text{best} \leftarrow \text{argmax}_{1 \leq i \leq n} \left[\frac{\text{Sum}_i}{N_i} + \frac{g(N)}{\sqrt{N_i}} \right]$

pull arm a_{best} and get reward r

$\text{Sum}_{\text{best}} \leftarrow \text{Sum}_{\text{best}} + r$; $N_{\text{best}} \leftarrow N_{\text{best}} + 1$; $N \leftarrow N+1$
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Algorithm:

For i ← 1 to n { Sum_i ← R(arm_i); N_i ← 1 }; N ← n /* Initialization */

Loop Forever

best ← argmax \[\frac{\text{Sum}_i}{N_i} \] \(g(N) \) \(\sqrt{\frac{1}{N_i}} \) \(\hat{R}_i \)

pull arm \(a_{\text{best}} \) and get reward \(r \)

\(\text{Sum}_{\text{best}} \leftarrow \text{Sum}_{\text{best}} + r; \quad N_{\text{best}} \leftarrow N_{\text{best}} + 1; \quad N \leftarrow N + 1 \)
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Algorithm:

Pull each arm once

For i ← 1 to n
{ Sum$_i$ ← R(arm$_i$);
N$_i$ ← 1 };
N ← n /* Initialization */

Loop Forever

best ← argmax$_{1 \leq i \leq n}$ \[\frac{\text{Sum}_i}{\text{N}_i} \left(\frac{\text{g}(N)}{\sqrt{\text{N}_i}} \right) \] \[\hat{R}_i \]

pull arm a$_{\text{best}}$ and get reward r

Sum$_{\text{best}}$ ← Sum$_{\text{best}}$ + r;
N$_{\text{best}}$ ← N$_{\text{best}}$ + 1;
N ← N+1
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Reminder: this is a form of MDP
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Reminder: this is a form of MDP

\[\Pi^{\text{UCB}}(s) = \underset{1 \leq i \leq n}{\text{argmax}} \left[\frac{\text{Sum}_i}{N_i} + \frac{g(N)}{\sqrt{N_i}} \right] \]
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Why $g(N) = \sqrt{2 \log (1 + N \log^2 N)}$ or $c\sqrt{\ln(N)}$?
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Why $g(N) = \sqrt{2 \log (1 + N \log^2 N)}$ or $c\sqrt{\ln(N)}$?

Instead of cumulative discounted reward, average reward for N steps
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Why \(g(N) = \sqrt{2 \log (1 + N \log^2 N)} \) or \(c\sqrt{\ln(N)} \)?

Instead of cumulative discounted reward, average reward for \(N \) steps

Expected average reward for a policy \(\Pi \): \(\mu^\Pi_N = E_\Pi \left[\frac{\sum_{i=1}^n \text{Sum}_i}{N} \right] \)
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Why $g(N) = \sqrt{2 \log (1 + N \log^2 N)}$ or $c\sqrt{\ln(N)}$?

Instead of cumulative discounted reward, average reward for N steps

Expected average reward for a policy Π: $\mu^\Pi_N = \mathbb{E}_\Pi \left[\frac{\sum_{i=1}^n \text{Sum}_i}{N} \right]$

Expected average reward for always picking optimal arm: $\mu^{\text{best}} = \max_i R_i$
Why $g(N) = \sqrt{2 \log (1 + N \log^2 N)}$ or $c\sqrt{\ln(N)}$?

Expected average reward for a policy Π: μ^Π_N

Expected average reward for optimal arm: μ^{best}

Regret for a policy: $\text{regret}^\Pi_N = N\mu^{\text{best}} - N\mu^\Pi_N$
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Why $g(N) = \sqrt{2 \log (1 + N \log^2 N)}$ or $c\sqrt{\ln(N)}$?

Expected average reward for a policy Π: μ^Π_N
Expected average reward for optimal arm: μ^{best}

Regret for a policy: $\text{regret}_N^\Pi = N\mu^{\text{best}} - N\mu^\Pi_N$

How much exploration costs you
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Why $g(N) = \sqrt{2 \log(1 + N \log^2 N)}$ or $c\sqrt{\ln(N)}$?

Regret for a policy: $\text{regret}_N = N\mu_{\text{best}} - N\mu_N$
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Why \(g(N) = \sqrt{2 \log (1 + N \log^2 N)} \) or \(c\sqrt{\ln(N)} \)?

Regret for a policy: \(\text{regret}_N \Pi = N\mu_{\text{best}} - N\mu_{\Pi} \)

Known Result: \(\text{regret}_N \Pi = \Omega(\log(N)) \)
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Why \(g(N) = \sqrt{2 \log (1 + N \log^2 N)} \) or \(c\sqrt{\ln(N)} \)？

Regret for a policy: \(\text{regret}_N = N\mu_{\text{best}} - N\mu_N \)

Known Result: \(\text{regret}_N = \Omega(\log(N)) \)

Your expected regret will grow at least logarithmically with \(N \).
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Why $g(N) = \sqrt{2 \log (1 + N \log^2 N)}$ or $c\sqrt{\ln(N)}$?

Regret for a policy: $\text{regret}_N = N\mu_{\text{best}} - N\mu_{\Pi}$

Known Result: $\text{regret}_N = \Omega(\log(N))$

$\text{regret}_N^{\text{UCB}(g(N))} = O(\log(N))$

UCB with these $g(N)$ functions has regret that grows at worst logarithmically with N.

Your expected regret will grow at least logarithmically with N.
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Why \(g(N) = \sqrt{2 \log (1 + N \log^2 N)} \) or \(c \sqrt{\ln(N)} \)?

Regret for a policy: \(\text{regret}_N = N \mu_{\text{best}} - N \mu_N \)

Known Result: \(\text{regret}_N = \Omega(\log(N)) \)

\(\text{regret}_N^{\text{UCB}(g(N))} = \mathcal{O}(\log(N)) \)

UCB with these \(g(N) \) functions has regret that grows at worst logarithmically with \(N \)

They are “optimal”

Your expected regret will grow at least logarithmically with \(N \)
Monte Carlo Tree Search (MCTS)
Application of multi-armed bandits
Monte Carlo Tree Search (MCTS)
Application of multi-armed bandits

(Section 5.4)
Timeline of Key Ideas in Game Tree Search

<table>
<thead>
<tr>
<th>Year</th>
<th>Person</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1948</td>
<td>Alan Turing</td>
<td>Look ahead and use an evaluation function</td>
</tr>
<tr>
<td>1950</td>
<td>Claude Shannon</td>
<td>Game tree search</td>
</tr>
<tr>
<td>1956</td>
<td>John McCarthy</td>
<td>Alpha-beta pruning</td>
</tr>
<tr>
<td>1959</td>
<td>Arthur Samuel</td>
<td>Learn evaluation function (Reinforcement learning)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>
1997: Deep Blue defeats Gary Kasparov (3½–2½)

Game tree search with alpha-beta pruning plus lots of enhancements
Go?

Branching factor is in the 100s

Evaluation function is difficult because payoff may be very far away

Needed new ideas
<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>Bruce Ballard</td>
<td>Lookahead for probabilistic moves</td>
</tr>
<tr>
<td>1987</td>
<td>Bruce Abramson</td>
<td>Evaluation by expected outcome (repeated simulation)</td>
</tr>
<tr>
<td>1992</td>
<td>Gerald Tesauro</td>
<td>TD-Gammon (reinforcement learning, self-play)</td>
</tr>
<tr>
<td>1992</td>
<td>Bernd Brugmann</td>
<td>Monte Carlo Go (simulated annealing)</td>
</tr>
<tr>
<td>1999</td>
<td>U of Alberta</td>
<td>Simulation in Poker</td>
</tr>
<tr>
<td>1999</td>
<td>Matt Ginsberg</td>
<td>Simulation in Bridge</td>
</tr>
<tr>
<td>2002</td>
<td>Brian Sheppard</td>
<td>Simulation in Scrabble</td>
</tr>
<tr>
<td>2006</td>
<td>Levente Kocsis and Csaba Szepesvár</td>
<td>Multi-armed bandits for Monte-Carlo tree search</td>
</tr>
</tbody>
</table>
2016: AlphaGo defeats Lee Sedol (4-1)
Key ideas of Monte Carlo Tree Search:

1. View move selection as a multi-armed bandit problem
Multi-Armed Bandit

\[
\begin{align*}
R_1 & \quad R_2 & \quad R_3 & \quad R_4 & \quad \ldots & \quad R_n \\
M_1 & \quad M_2 & \quad M_3 & \quad M_4 & \quad \ldots & \quad M_n
\end{align*}
\]
Multi-Armed Bandit for Game Tree Search

\[a_1, a_2, a_3, a_4, \ldots, a_n \]

\[M_1, M_2, M_3, M_4, \ldots, M_n \]

\[R_1, R_2, R_3, R_4, R_n \]
Multi-Armed Bandit for Game Tree Search

What move should I try?
Key ideas of Monte Carlo Tree Search:

1. View move selection as a multi-armed bandit problem
2. Evaluate moves by simulating games
Multi-Armed Bandit for Game Tree Search

What move should I try on each simulated game?