CS 4700:
Foundations of
Artificial Intelligence

Spring 2019
Prof. Haym Hirsh

Lecture 9
February 11, 2019

Karma Lectures This Week
“Learning How to Say It: Language Alexander “Sasha” Rush
TU,4F§E) 12 Gates GO1 Generation and Deep Learning Harvard University
' Natural Language, Machine Learning
Augm_entlng Imaglna_tlon: Capturing, Abe Davis
Th. Feb 14 Modeling, and Exploring the World Stanford Universit
s Gates GO1 | Through Video” y
Computer Vision and Graphics, Machine Learning
Goldwin Smith TBA Josh Tenenbaum
Fr, Feb 15 . MIT
1290 Hall G76 Lewis
' Auditorium Cognitive Science, Machine Learning
“The Environmental Impact of the Advent Elena Bela.vma.
: Cornell University
Fr, Feb 15 of Online Grocery Retail :
3-30 Gates GO1 College of Business
Environmental impact of technology

Just for Interest

Blindspot: Hidden Biases of Good People
Mahzarin Banaji, Harvard University

Today 3:30-5, Statler Auditorium

Homework 2

Out today, due Monday 1:24pm

Lunches with the Professor

* Mondays 12-1pm
* 9 people
* First-come first-served

 https://doodle.com/poll/ami3irx93hkg3pbn (and off the course
webpage)

https://doodle.com/poll/qmi3irx93hkg3pbn

Lunches with the Professor

* Mondays 12-1pm
* 9 people
* First-come first-served

 https://doodle.com/poll/ami3irx93hkg3pbn (and off the course
webpage)

* Free

https://doodle.com/poll/qmi3irx93hkg3pbn

Tic Tac Toe

MAX (X)
X X X
MIN (o) X X X
x[o x| Jo] [x
MAX (X) o

MIN (0) X X
x|lo[x| [x][o]x] [x]o[x
TERMINAL o[x]| [0O[0]X X
o) X|X[O] [X|O]|O
-1 0 1

=

1770-1854

The Turk
Automaton Chess Player

Ty
2 e

-~ ..p‘ -
- o = - - . . y e : a
of g /{ /' - - ” - @ ’ ° |
- - B 30 D R A, ik otk RSN e S SeRIss '
* - —— ! R e tnera e B 2 e - M !\ - ‘l !
~ . A | .
-~) . » 4 3
- o e 59 . fa - i
'-o"-r :
//' ‘
- >
- :
-]
. §
- |
7~ !
' A :
e | —
o ’ - -
Ve i !
‘/ ! .
”]
: .‘. -
//: ; e

S

Q

>

©

(ol
— e ——

4 - S | | 731 | | ' el § IJJ
,J|'|. S 1 _ -) \\. |
e aadl vyt % = m e ,.. \\. ! \ *; :_,
P | |
s I [S e S e : W:.t
msm.mmn_uwTC A
= - | s (4 _
1 QFE v ¢ I Rl
el T H £ o “ Bl
i I B !
] e © b
R e A m \\\M
R O :
e T - s + | T
,n.bur.l.vl..t, - - \K :
T A e e < b 3

T i e =
R tartat ot s e Vi SL Y s .
GRS (e L : = £
—— . "L T T

-y m—— g

e < B

-~ o - p 3 >
- et e & O

ot e —

o —

o : AV e - - - -
e

§ 1

- P

’3
“a

- ———
-

e
e el]

- T .
- SN - s
S S
¢ TN
-~ .~
RSO .
AL, St -
T
o - e ?
L -
000 « & A
.- .
e Yo va—— O
™ -~
-
" - - 5
-,
S
e I
px ., -
- oo - -
-

i Leonardo Torres y Quevedo
AN N RN “El Ajedrecista”
’ \ 4 BERN Rook-King vs King endgame
e TR |‘ ™ ” Har.dcoo.led rules
d) AR AR ' Recognized illegal moves
[fia (1

DT RALARRLNE alllla Ll g

 enane 04 Nt

1948/1951/1953

Chapter 25 Alan Turing
DIGITAL COMPUTERS APPLIED Turochamp
TO GAMES Two-move lookahead
Chess problems are the hymn tunes of mathematics—G. H, HARDY Eva I Uation fU nction
s One level “minimax”
MACHINES WHICH WILL PLAY GAMES have a long and interest;

history. Among the first and most famous was the chess-playing
automaton constructed in 1769 by the Baron Kempelen; M. Maelzel
took it on tour all over the world, deceiving thousands of people
into thinking that it played the game automatically. This machine
was described in detail by Edgar Allan Poe; it is said to have
defeated Napoleon himself—and he was accounted quite a good
player, but it was finally shown up when somebody shouted “FIre”
during a game, and caused the machine to go into a paroxysm
owing to the efforts of the little man inside to escape.

In about 18go Signor Torres Quevedo made a simple machine—

a real machine this time—which with a rook and king can check-
mate an opponent with a single king. This machine avoids stalemate
very cleverly and always wins its games. It allows an opponent to
make two mistakes before it refuses to play further with him, so it
is always possible to cheat by moving one’s own king the length of
the board. The mechanism of the machine is such that it cannot
move its rook back past its king and one can then force a draw!

(0w A5 1 »

Tic Tac Toe

MAX (X)
X X X
MIN (o) X X X
x[o x| Jo] [x
MAX (X) o

MIN (0) X X
x|lo[x| [x][o]x] [x]o[x
TERMINAL o[x]| [0O[0]X X
o) X|X[O] [X|O]|O
-1 0 1

Tic Tac Toe

MAX (x)

3

MIN (0) X X

X
MAX (x) 0

f(a) f(b) f(c)

PositioNn-PLAY VALUE

Each white piece has a certain position-play contribution and

has the black king. These must all be added up to give the positioq 1948/1951/1953

play value.

For a Q, R, B, or Kt, count—

(a) The square root of the number of moves the piece can 1
from the position, counting a capture as two moves, and not
getting that the king must not be left in check.

Alan Turing
Turochamp

(b) (If not a Q) 1-0 if it is defended, and an additional ¢ TWo-move lookahead

twice defended.
For a K, count—

Evaluation function

(¢) For moves other than castling as (a) above. One level “minimax”

(d) It is then necessary to make some allowance for the vu

ability of the K. This can be done by assuming it to be replaced by a
friendly Q on the same square, estimating as in (), but subtracting
instead of adding.

(¢) Count 1-0 for the possibility of castling later not being lost by
moves of K or rooks, a further 1-0 if castling could take place on the
next move, and yet another 1-0 for the actual performance of castling.

For a P, count—

(f) o2 for each rank advanced.

(g) o3 for being defended by at least one piece (not P).

For the black K, count—

(k) 1-0 for the threat of checkmate.

(1) o5 for check.

We can now state the rule for play as follows. The move chosen
must have the greatest possible value, and, consistent with this, the
greatest possible position-play value. If this condition admits of

Game tree “minimax” search

Philosophical Magazine, Ser.7, Vol. 41, No. 314 - March 1950.

XXII. Programming a Computer for Playing Chess'
By CLAUDE E. SHANNON

Bell Telephone Laboratories, Inc., Murray Hill, N.J 2
[Received November 8, 1949]

1. INTRODUCTION

This paper 1s concerned with the problem of constructing a computing routine or
"program" for a modern general purpose computer which will enable it to play chess.
Although perhaps of no practical importance, the question is of theoretical interest, and it
is hoped that a satisfactory solution of this problem will act as a wedge 1n attacking other
problems of a similar nature and of greater significance. Some possibilities in this

direction are: -

(1)Machines for designing filters, equalizers, etc.
(2)Machines for designing relay and switching circuits.

Game tree “minimax” search

Philosophical Magazine, Ser.7, Vol. 41, No. 314 - March 1950.

XXII. Programming a Computer for Playing Chess'
By CLAUDE E. SHANNON

f(P) = 200(K-K") + 9(Q-Q') + 5(R-R") + 3(B-B+N-N') + (P-P") -
0.5(D-D'+S-S'+-T') +
0.1(M-M") + .

This paper 1s concerned with the problem of constructing a computing routine or
"program" for a modern general purpose computer which will enable it to play chess.
Although perhaps of no practical importance, the question is of theoretical interest, and it
is hoped that a satisfactory solution of this problem will act as a wedge 1n attacking other
problems of a similar nature and of greater significance. Some possibilities in this
direction are: -

(1)Machines for designing filters, equalizers, etc.
(2)Machines for designing relay and switching circuits.

4.3.3 Some Studies in Machine Learning Using the Game of Checkers 535

Some Studies in Machine Learning

1959

Improving play

Using the Game of Checkers ‘ by learning

Arthur L. Samuel

Book games
Self-play

Abstract: Two machine-learning procedures have been investigated in some detail using the game of
checkers. Enough work has been done to verify the fact that a computer can be programmed so that it will
learn to play a better game of checkers than can be played by the person who wrote the program. Further-
more, it can learn to do this in a remarkably short period of time (8 or 10 hours of machine-playing time)
when given only the rules of the game, a sense of direction, and a redundant and. incomplete list of

parameters which are thought to have something to do with the game, but whose correct signs and relative

weights are unknown and unspecified. The principles of machine learning verified by these ‘experiments

are, of course, applicable to many other situations.

Introduction

The studies reported here have been concerned with the
programming of a digital computer to behave in a way
which. if done by human beings or animals, would be
described as involving the process of learning. While
this is not the place to dwell on the importance of ma-
chine-learning procedures, or to discourse on the philo-

el Rt W o et B G e sl . B D I e T L) .

method should lead to the development of general-pur-
pose learning machines. A comparison between the size
of the switching nets that can be reasonably constructed
or simulated at the present time and the size of the neural
nets used by animals, suggests that we have a long way
to go before we obtain practical devices.® The second

Gy Gl A A taatc R T R | T . P T T, ST aeo . [\ Aoy

ARTIFICIAL INTELLIGENCE _ 357

1989

| | Function approximation
A Parallel Network that Learns to| ., cy5luation function

Play Backgammon | Repeatedly simulate games
(dealing with dice)

G. Tesauro*

Center for Complex Systems Research, University of Illinois
at Urbana-Champaign, 508 S. Sixth St., Champaign,
IL 61820, U.S.A.

" T.J. Sejnowski** «
Biophysics Department, The Johns Hopkins University,
Baltimore, MD 21218, U.S. A.

ABSTRACT

A class of connectionist networks is described that has learned to play backgammon at an
intermediate-to-advanced level. The networks were trained by back-propagation learning on a large
set of sample positions evaluated by a human expert. In actual match play against humans and
conventional computer programs, the networks have demonstrated substantial ability to generalize on
the basis of expert knowledge of the game. This is possibly the most complex domain yet studied with
connectionist learning. New techniques were needed to overcome problems due to the scale and
complexity of the task. These include techniques for intelligent design of training set examples and
efficient coding schemes, and procedures for escaping from local minima. We suggest how these
techniques might be used in applications of network learning to general large-scale, difficult
“real-world™ problem domains. '

Minimax Value of a Game

* | win = +o0
* | lose = —© My Turn

@ Terminal Nodes

Minimax Value of a Game

* \/(s) = value of win (to me)
My Turn

Terminal Nodes

Minimax Value of a Game

* \/(s) = value of win (to me)
My Turn

@ Terminal Nodes

Minimax Value of a Game

* \/(s) = value of win (to me)
My Opponent’s Turn

Terminal Nodes

Minimax Value of a Game

‘ My Turn
V(s) = Max of successors

My Opponent’s Turn
V(s) = Min of successors

Do b o

Minimax Value of a Game

‘ My Turn
V(s) = Max of successors

‘ My Opponent’s Turn

V(s) = Min of successors

Minimax Value of a Game

‘ My Turn
V(s) = Max of successors

My Opponent’s Turn
V(s) = Min of successors

@@ ® -

Minimax Value of a Game

‘ My Turn
V(s) = Max of successors

My Opponent’s Turn
V(s) = Min of successors

@@ ® -

Minimax Value of a Game

My Turn
V(s) = Max of successors

My Opponent’s Turn
V(s) = Min of successors

@@ ® -

Minimax Value of a Game

* Current state: s
* Available operators: ops
* Value of a state: V(s)

* My turn:
e Value of state s = V(s) = Onelgécs{V(apply(S, 0))}
» Best move = = argmax{V(apply(s,0))}

0€0ps
* Opponent’s turn:

e Value of state s = V(s) = Orél(i)rBS{V(apply(S, 0))}
» Best move = = argmin{V(apply(s, 0))}

oc€ops

Minimax Value of a Game

V(s) =

My Turn
Max of successors

My Opponent’s Turn

V(s) =

(1O OO0 00

an be contlnued arbitrarily deeply

SO

O -

Min of successors

My Turn
Max of successors

IVIy Opponent’s Turn

(S)

Min of successors

Minimax Value of a Game

V(s) =

My Turn
Max of successors

My Opponent’s Turn

V(s) =

(0O OO0 (10O

an be contmued arbitrarily deeply

N

® .

Min of successors

My Turn
Max of successors

My Opponent’s Turn

/(s) =

Min of successors

Minimax Value of a Game

‘ My Turn
V(s) = Max of successors
My Opponent’s Turn

Can be continued arbitrarily deeply

. .
‘ ‘ \ @ My Opponent’s Turn
7(s) = Min of successors

V(s) = Min of successors
- J @ O OLr
\ Max of successors

Minimax Value of a Game

‘ My Turn
V(s) = Max of successors

My Opponent’s Turn

Can be continued arbitrarily deeply

. .
‘ ‘ \ @ My Opponent’s Turn
7(s) = Min of successors

V(s) = Min of successors
- J @ O OLr
\ Max of successors

Minimax Value of a Game

‘ My Turn
V(s) = Max of successors

My Opponent’s Turn

Can be continued arbitrarily deeply

. .
‘ ‘ \ @ My Opponent’s Turn
7(s) = Min of successors

V(s) = Min of successors
- J @ O OLr
\ Max of successors

Minimax Value of a Game

* Current state: s
* Available operators: ops
* Value of a state: V(s)

* My turn:
e Value of state s = V(s) = Onelgécs{V(apply(S, 0))}
» Best move = = argmax{V(apply(s,0))}

0€0ps
* Opponent’s turn:

e Value of state s = V(s) = Orél(i)rBS{V(apply(S, 0))}
» Best move = = argmin{V(apply(s, 0))}

oc€ops

Minimax Algorithm

Initial call:
* If | go first: minimax(initial-state,ops)
* If opponent goes first: maximin(initial-state,ops)

Minimax Algorithm

minimax(s,ops):

if terminal(s) then return V(s)
else
val < -o0;
foreach o € ops
val’ <~ maximin(apply(s,0),0ps);
if val’ > val then val <~ val’; bestop < o;
return val

Minimax Algorithm

minimax(s,ops): maximin(s,ops):
if terminal(s) then return V(s) if terminal(s) then return V(s)
else else
val < -oo; val < +oo;
foreach o € ops foreach o € ops
val’ «— maximin(apply(s,0),0ps); val’ «— minimax(apply(s,0),0ps);
if val’ > val then if val’ < val then
val < val’; val < val’;
bestop « o; bestop <« 0;

return val return val

Minimax Algorithm
(Complete Search)

minimax(s,ops): maximin(s,ops):
if terminal(s) then return V(s) if terminal(s) then return V(s)
else else
val < -oo; val < +oo;
foreach o € ops foreach o € ops
val’ «— maximin(apply(s,0),0ps); val’ «— minimax(apply(s,0),0ps);
if val’ > val then if val’ < val then
val < val’; val < val’;
bestop « o; bestop <« 0;

return val return val

Minimax Algorithm
(Complete Search)

minimax(s,ops): maximin(s,ops):
if terminal(s) then return V(s) if terminal(s) then return V(s)
else else
val < -oo; val < +oo;
foreach o € ops foreach o € ops
val’ «— maximin(apply(s,0),0ps); val’ «— minimax(apply(s,0),0ps);
if val’ > val then if val’ < val then
val < val’; val < val’;
bestop « o; bestop <« 0;

return val return val

Minimax Search

* Complete search:
Generally intractable to go all the way to terminal nodes

* Key idea (Shannon’s idea):
Use a function V(s) that applies to intermediate states and returns a
number that estimates the value of s

Minimax Algorithm
(Complete Search)

minimax(s,ops): maximin(s,ops):
if terminal(s) then return V(s) if terminal(s) then return V(s)
else else
val < -oo; val < +oo;
foreach o € ops foreach o € ops
val’ «— maximin(apply(s,0),0ps); val’ «— minimax(apply(s,0),0ps);
if val’ > val then if val’ < val then
val < val’; val < val’;
bestop « o; bestop <« 0;

return val return val

Minimax Algorithm
(Heuristic Search)

minimax(s,ops,depth): maximin(s,ops,depth):
if cutoff(s,depth) then return V(s) if cutoff(s,depth) then return V(s)
else else
val < -oo; val < +oo;
foreach o € ops foreach o € ops
val’ «— maximin(apply(s,0),ops,depth+1); val’ «— minimax(apply(s,0),ops,depth+1);
if val’ > val then if val’ < val then
val < val’; val < val’;
bestop « o; bestop <« o;
return val return val
Initial call:
* Iflgofirst: minimax(initial-state,ops,0)

* If opponent goes first: maximin(initial-state,ops,0)

Minimax Value of a Game

V(s) =

My Turn
Max of successors

My Opponent’s Turn

V(s) =

(1O OO0 00

an be contlnued arbitrarily deeply

SO

O -

Min of successors

My Turn
Max of successors

IVIy Opponent’s Turn

(S)

Min of successors

Minimax Value of a Game

‘ My Turn
V(s) = Max of successors

My Opponent’s Turn
V(s) = Min of successors

Do b o

Use heuristic evaluation function

Minimax Value of a Game

My Turn
V(s) = Max of successors

My Opponent’s Turn
V(s) = Min of successors

@@ ® -

Use heuristic evaluation function

Alpha-Beta Pruning

New idea to improve efficiency:
Can prune branches that are guaranteed never to be used

(Analogous to returning False for And (x4, x,, ...) after you reach the
first x, that evaluates to False, without evaluating the remaining terms)

Alpha-Beta Pruning

‘ My Turn
V(s) = Max of successors

My Opponent’s Turn
V(s) = Min of successors

Do b o

Alpha-Beta Pruning

‘ My Turn
V(s) = Max of successors

LR JQ +5

My Opponent’s Turn
V(s) = Min of successors

Alpha-Beta Pruning

‘ My Turn
V(s) = Max of successors

My Opponent’s Turn

, V(s) = Min of successors

Alpha-Beta Pruning

‘ My Turn
V(s) = Max of successors

My Opponent’s Turn

, V(s) = Min of successors

Alpha-Beta Pruning

‘ My Turn
V(s) = Max of successors

My Opponent’s Turn

, V(s) = Min of successors

Alpha-Beta Pruning

‘ My Turn
V(s) = Max of successors
My Opponent’s Turn

, V(s) = Min of successors

This is guaranteed to be a better move than this
regardless of what results from the other actions

Alpha-Beta Pruning

My Turn
V(s) = Max of successors

My Opponent’s Turn
V(s) = Min of successors

oo ¢* o

