CS 4701: Practicum in Artificial Intelligence

Organizational Meeting:
Wed, Sep 11, 10:10 am, Gates G01
Makeup time TBA
Email: FAI-Practicum-l@cornell.edu
CS 4700 and CS 4701 are uncoupled
4701 is not synced up with 4700
CS 4700: Foundations of Artificial Intelligence

Fall 2019
Prof. Haym Hirsh
Today

Overview of AI

Overview of the course
The problem with AI:

Different people mean different things
What is Artificial Intelligence?
What is Intelligence?
John McCarthy (1927-2011)
A PROPOSAL FOR THE
DARTMOUTH SUMMER RESEARCH PROJECT
ON ARTIFICIAL INTELLIGENCE

J. McCarthy, Dartmouth College
M. L. Minsky, Harvard University
N. Rochester, I.B.M. Corporation
C. E. Shannon, Bell Telephone Laboratories

August 31, 1955
A PROPOSAL FOR THE
DARTMOUTH SUMMER RESEARCH PROJECT
ON ARTIFICIAL INTELLIGENCE

J. McCarthy, Dartmouth College
M. L. Minsky, Harvard University
N. Rochester, I.B.M. Corporation
C. E. Shannon, Bell Telephone Laboratories

August 31, 1955
A Proposal for the
DARTMOUTH SUMMER RESEARCH PROJECT ON ARTIFICIAL INTELLIGENCE

We propose that a 2 month, 10 man study of artificial intelligence be carried out during the summer of 1956 at Dartmouth College in Hanover, New Hampshire. The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it. An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves. We think that a significant advance can be made in one or more of these problems if a carefully selected group of scientists work on it together for a summer.

The following are some aspects of the artificial intelligence problem:

1) Automatic Computers

If a machine can do a job, then an automatic calculator can be programmed to simulate the machine. The speeds and memory capacities of present computers may be insufficient to simulate many of the higher functions of the human brain, but the major obstacle is not lack of machine capacity, but our inability to write programs taking full advantage of what we have.

2) How Can a Computer be Programmed to Use a Language

It may be speculated that a large part of human thought consists of manipulating words according to rules of reasoning
The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it.
Intelligence (1950s)
Intelligence

- Use Language
- See
- Manipulate and Move
- Learn
- Play Games
- Plan and Reason

(1950s)
Artificial Intelligence

- Use Language
- See
- Manipulate and Move
- Learn
- Play Games
- Plan and Reason

(1950s)
Artificial Intelligence

- Natural Language Understanding
- Computer Vision
- Robotics
- Machine Learning
- Games
- Planning/Automated Reasoning

(1950s)
The AI Spectrum

Narrow “cognitive” skills Broad capabilities
The AI Spectrum

Narrow “cognitive” skills
“Weak AI”

Broad capabilities
“Strong AI”
The AI Spectrum

Narrow “cognitive” skills
“Weak AI”

Broad capabilities
“Strong AI”
The AI Spectrum

Narrow “cognitive” skills
 “Weak AI”

Important successes

Broad capabilities
 “Strong AI”
The AI Spectrum

Narrow “cognitive” skills
“Weak AI”

Important successes

Broad capabilities
“Strong AI”

Fearmongering
Utopian idealism
The AI Spectrum

Narrow “cognitive” skills
“Weak AI”

Important successes

Broad capabilities
“Strong AI”

Fearmongering
Utopian idealism
Bad predictions
Bad Predictions

“Predicting is hard. Especially the future.”
- Yogi Berra

• It’s been hard to tell what would be easy and what would be hard
 • “The hard stuff turned out to be easy and the easy stuff turned out to be hard”

• AI has a history of bad predictions (and people exploiting them)
The AI Spectrum

Narrow “cognitive” skills
“Weak AI”

Important successes

Broad capabilities
“Strong AI”

Fearmongering
Utopian idealism
Bad predictions
The AI Spectrum

Narrow “cognitive” skills
“Weak AI”
Important successes

Broad capabilities
“Strong AI”
Fearmongering
Utopian idealism
Bad predictions
Science Fiction
The AI Spectrum

Narrow “cognitive” skills
“Weak AI”

Important successes

Legitimate fears

Broad capabilities
“Strong AI”

Fearmongering
Utopian idealism
Bad predictions
Science Fiction
The AI Spectrum

Collateral “Successes”

Narrow “cognitive” skills
“Weak AI”

Important successes

Broad capabilities
“Strong AI”

Fearmongering
Utopian idealism
Bad predictions
Science Fiction

Legitimate fears
Collateral Successes

• Time sharing
• Functional programming languages
• Hardware verification
• ...
• Web search engines
• Recommendation systems
• Language technologies
• Machine learning
• ...
• Autonomous vehicles?
• Face recognition?
1990s: Common ideas arising in separate areas:
Probabilistic modeling
Machine learning, mathematical optimization of error on training data
Artificial Intelligence

- Natural Language Understanding
- Computer Vision
- Robotics
- Machine Learning
- Games
- Planning/Automated Reasoning

2000-present: Successes due to
- “Standing on the shoulders of giants”
- Moore’s Law
- Machine learning/data
The AI Spectrum

Collateral “Successes”

Narrow “cognitive” skills
“Weak AI”

Important successes

Broad capabilities
“Strong AI”

Fearmongering
Utopian idealism
Bad predictions
Science Fiction

Legitimate fears
The AI Spectrum

Collateral “Successes” – many are also called AI

Narrow “cognitive” skills
“Weak AI” — Important successes

? — Legitimate fears

Broad capabilities
“Strong AI” — Fearmongering
Utopian idealism — Bad predictions
Science Fiction
The AI Spectrum

Collateral “Successes” – many are also called AI

Narrow “cognitive” skills

Important successes

This Course

Broad capabilities “Strong AI”

Fearmongering

Utopian idealism

Legitimate fears

Bad predictions

Science Fiction
The AI Spectrum

Collateral “Successes” – many are also called AI

Non-AI “AI”

Narrow “cognitive” skills

Impressed successes

This Course

Broad capabilities
“Strong AI”
Fearmongering
Utopian idealism
Bad predictions
Science Fiction

Legitimate fears
This Course

- Artificial Intelligence
 - Natural Language Understanding
 - Computer Vision
 - Robotics
 - Machine Learning
 - Games
 - Planning/Automated Reasoning
This Course

- Artificial Intelligence
 - Natural Language Understanding
 - Computer Vision
 - Robotics
 - Machine Learning
 - Games
 - Planning/Automated Reasoning
- Cognitive Science
This Course

Artificial Intelligence

Natural Language Understanding
Computer Vision
Robotics
Machine Learning
Games
Planning/Automated Reasoning

Bio inspired
Human-like
Cognitive Science
Course Details

• Instructor: Prof. Haym Hirsh, Gates 352 (Office Hours TBA)
• Head TA: Arjun Bhalla
• Course website: http://www.cs.cornell.edu/courses/cs4700/
• Course email: FAI-L@cornell.edu
• Discussions: Piazza
• Assignment submissions: Gradescope, CMS
Prerequisites

• CS 2110/ENGRD 2110
• CS 2800

• Main items:
 • Probability
 • Propositional and first-order logic
 • Big-O notation
 • Basic algorithms
Grading

• 15%: Homeworks
 • ~6 over the semester
 • Some will involve programming
 • Late policy: Up to 2 days late for 50% credit (plus 5 minute grace period)
 • Collaboration policy: Writeup must be your own
 • Acknowledge collaborators, if in doubt please ask!

• 40%: Prelim
 • October 22 at 7:30pm in Statler Auditorium

• 45%: Final
 • December 15 at 9:00am
 • Conflicts: Email FAI-L@cornell.edu by October 24
Programming

• Python
 • This is a 4000 level course, if you don’t know it, learn it
 • It’s good for you to know

• Jupyter Notebooks
 • This is a 4000 level course, if you don’t know it, learn it
 • It’s good for you to know
 • Introduction later next week (TBA)
Grading

• Regrade requests: within 7 days, through Gradescope
• +/- 3%: Percentages will be adjusted to decrease whichever is lowest and increase whichever is highest by 3%
Technology Policy

• No technology except for first four rows of left and right sides
• Must be used for course
Special Accommodations

Scan documentation letter and email to FAI-L@cornell.edu
Textbook

We will be using draft chapters of

by Stuart Russell and Peter Norvig

Chapters will be available off of the course website
Feedback solicited
Karma Points

• Used for borderline students – a way of measuring engagement

• Examples of ways to **earn karma points**:
 • Answering questions and writing helpful posts on Piazza
 • Attending AI seminars that I share with you - you will be asked to submit a list of seminars that you attended at the end of the semester
 • Providing helpful feedback for the authors on the textbook
 • Submitting a course evaluation at the end of the semester.

• Examples of ways to **lose karma points**:
 • Posting a question on Piazza that has already been asked and answered
 • Emailed course staff a question that is already answered on the website
If you’re not enrolled, get on the waitlist

Permission numbers given on Tuesdays and Thursdays

I’m optimistic about people getting in