Homework 2:
Due Friday, Oct 16, 2:40pm

This is the late submission deadline with penalty waived
=> 0% credit if submitted after this

Grading being done on Saturday
(in time for studying for prelim)
Prelim Reminder:

Tuesday, October 22, 7:30-9:00 PM Statler Aud
(If you have a conflict you should have already informed us)

Covers material through today’s lecture
Review questions are up on website
Review sessions:

Saturday, 3:00-5:00 PM Phillips 101
Prepared material, with TAs

Sunday, 8:00-9:30pm, Gates G01
Answering questions from students, with Prof. Hirsh
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Speaker</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th 10/17</td>
<td>11:40am</td>
<td>Gates G01</td>
<td>Martín Abadi, Google</td>
<td>“On the Theory and Practice of Software that Learns”</td>
</tr>
<tr>
<td>Th 10/24</td>
<td>4:30pm</td>
<td>Statler Aud</td>
<td>David Lazer, Northeastern</td>
<td>“Democracy, Today: Fake news, Social Networks, and Algorithms”</td>
</tr>
<tr>
<td>Th 11/14</td>
<td>11:40am</td>
<td>Gates G01</td>
<td>Christopher Potts, Stanford</td>
<td>TBD (Computational Linguistics/NLP)</td>
</tr>
<tr>
<td>Tu 11/14</td>
<td>4:30pm</td>
<td>Physical Sciences Building, Room 120</td>
<td>Marion Fourcade, UC Berkeley</td>
<td>“A Maussian Bargain: Accumulation by Gift in Digital Capitalism” (Algorithms and Fairness seminar)</td>
</tr>
<tr>
<td>Th 11/21</td>
<td>11:40am</td>
<td>Gates G01</td>
<td>Peter Stone, TU Austin</td>
<td>TBA (Machine Learning, Robotics)</td>
</tr>
<tr>
<td>Th 12/5</td>
<td>11:40am</td>
<td>Gates G01</td>
<td>Jim Baker</td>
<td>TBD (AI and Policy)</td>
</tr>
<tr>
<td>Th 10/31</td>
<td>11:40am</td>
<td>Gates G01</td>
<td>Tim Roughgarden (Cornell PhD ’02)</td>
<td>TBD?</td>
</tr>
</tbody>
</table>
Example (Figure 16.1)

\[R(s,a,s') = -0.04 \]
(except in \(<4,2>\) and \(<4,3>\))
Simplified Example

\[R(s, a, s') = -0.04 \] (except in \(<2,1>\) and \(<2,2>\))
New Example

$R(s,a,s') = -0.04$ (except in $<2,1>$ and $<2,2>$)
New Example

\[R(s,a,s') = -0.04 \]

(except in \(<2,1>\) and \(<2,2>\))
Shorthand for This

R = - 0.04

1,1

R = + 1.0
R = - 0.04

1,2

R = + 1.0
R = - 0.04

2,1

R = +1.0
R = - 1.0

2,2

R = + 1.0
R = - 1.0
New Example

2

1

- 0.04
+ 1

- 0.04
- 1

1 2

1.0

X

X

X
$\Pi^* =$ What is the best thing to do in each state?
New Example

\[\Pi^* = \text{What is the best thing to do in each state?} \]
New Example

Π* = What is the best thing to do in each state?

Diagram:

-1 0 1
-1 0 1
-1 0 1
-1 0 1

1.0

X
New Example

\(\Pi^* = \text{What is the best thing to do in each state?} \)
Π* = What is the best thing to do in each state?

Either (two optimal strategies)
$\Pi^* =$ What is the best thing to do in each state?

A policy will have only one choice (could be either one)
Π* = What is the best thing to do in each state?

U*(<2,2>) =
U*(<1,2>) =
U*(<2,1>) =
U*(<1,1>) =
$\Pi^* = \text{What is the best thing to do in each state?}$

Value of optimal policy (parametrized by γ)

$$U^* (<2,2>) =$$

$$U^* (<1,2>) =$$

$$U^* (<2,1>) =$$

$$U^* (<1,1>) =$$
Π* = What is the best thing to do in each state?

Value of optimal policy (parametrized by γ)

\[U^*(<2,2>) = \]
\[U^*(<1,2>) = \]
\[U^*(<2,1>) = \]
\[U^*(<1,1>) = \]

\[U^*(s_0) = U^{Π^*}(s_0) = E \sum_{t=0}^{\infty} \gamma^t R(s_t, Π^*(s_t), \text{apply}(s_t, Π^*(s_t))) \]
Π* = What is the best thing to do in each state?

Value of optimal policy (parametrized by γ)

U*(<2,2>) =
U*(<1,2>) =
U*(<2,1>) =
U*(<1,1>) =

U*(s₀) = U^{Π*}(s₀) = \sum_{t=0}^{\infty} \gamma^t R(s_t, Π^* (s_t), \text{apply}(s_t, Π^* (s_t)))
Π* = What is the best thing
to do in each state?

Value of optimal policy
(parametrized by γ)

U*(<2,2>) = 1/(1 - γ)
U*(<1,2>) = 1/(1 - γ)
U*(<2,1>) = 1/(1 - γ)
U*(<1,1>) = -0.04 + γ / (1 - γ)

U*(s₀) = U^Π*(s₀) = \sum_{t=0}^{\infty} γ^t R(s_t, Π^*(s_t), apply(s_t, Π^*(s_t)))
New Example

\(\Pi^{[R]} = \text{Always go right} \)

\(U^{[R]} = \ldots \)

Value of a particular policy

\[
U^{[R]}(<2,2>) = \frac{1}{1 - \gamma} \\
U^{[R]}(<1,2>) = \frac{1}{1 - \gamma} \\
U^{[R]}(<2,1>) = -\frac{1}{1 - \gamma} \\
U^{[R]}(<1,1>) = -\frac{1}{1 - \gamma}
\]

\[
U^{\Pi^{[R]}}(s_0) = \sum_{t=0}^{\infty} \gamma^t R(s_t, \Pi^{[R]}(s_t), \text{apply}(s_t, \Pi^{[R]}(s_t)))
\]
New Example

```
  2  
 1 -0.04  +1
 1 -0.04  -1
  1  2
```

```
```

```
Original Simplified Example
Original Simplified Example

\( \Pi^* = \) What is the best thing to do in each state?
\( U^* = \) What is its value in each state?
Original Simplified Example

\( \Pi_{UR} = \) Policy to go up in row 1, right in row 2
\( U_{UR} = \) What is its value in each state?
Example

Policy $\Pi_{UR} =$ Go up if you’re in row 1, otherwise go right

$U_{UR}(<1,1>) = 0.8 \times [R(<1,1>,U,<1,2>) + \gamma \times U_{UR}(<1,2>)]$
$+ 0.1 \times [R(<1,1>,U,<1,1>) + \gamma \times U_{UR}(<1,1>)]$
$+ 0.1 \times [R(<1,1>,U,<2,1>) + \gamma \times U_{UR}(<2,1>)]$
Example

Policy $\Pi_{UR} = \text{Go up if you’re in row 1, otherwise go right}$

$$
U_{UR}(<1,1>) = 0.8 \times [R(<1,1>,U,<1,2>) + \gamma \times U_{UR}(<1,2>)]
+ 0.1 \times [R(<1,1>,U,<1,1>) + \gamma \times U_{UR}(<1,1>)]
+ 0.1 \times [R(<1,1>,U,<2,1>) + \gamma \times U_{UR}(<2,1>)]
= 0.8 \times [-0.04 + \gamma \times U_{UR}(<1,2>)]
+ 0.1 \times [-0.04 + \gamma \times U_{UR}(<1,1>)]
+ 0.1 \times [-1.0 + \gamma \times U_{UR}(<2,1>)]
= -0.136 + \gamma \times [0.8 \times U_{UR}(<1,2>) + 0.1 \times U_{UR}(<1,1>) + 0.1 \times U_{UR}(<2,1>)]
$$
Example

Policy $\Pi_{UR} = \text{Go up if you’re in row 1, otherwise go right}$

$$U_{UR}(<1,1>) = 0.8 \times [R(<1,1>, U, <1,2>) + \gamma \times U_{UR}(<1,2>)]$$
$$+ 0.1 \times [R(<1,1>, U, <1,1>) + \gamma \times U_{UR}(<1,1>)]$$
$$+ 0.1 \times [R(<1,1>, U, <2,1>) + \gamma \times U_{UR}(<2,1>)]$$
$$= 0.8 \times [-0.04 + \gamma \times U_{UR}(<1,2>)]$$
$$+ 0.1 \times [-0.04 + \gamma \times U_{UR}(<1,1>)]$$
$$+ 0.1 \times [-1.0 + \gamma \times U_{UR}(<2,1>)]$$
$$= -0.136 + \gamma \times [0.8 \times U_{UR}(<1,2>) + 0.1 \times U_{UR}(<1,1>) + 0.1 \times U_{UR}(<2,1>)]$$

And similarly for $<1,2>$, $<2,1>$, and $<2,2>$
Example

Policy $\Pi_{UR} = \text{Go up if you're in row 1, otherwise go right}$

\[
U_{UR}(\langle1,2\rangle) = 0.8 \times [R(\langle1,2\rangle, U, \langle2,2\rangle) + \gamma \times U_{UR}(\langle2,2\rangle)] \\
+ 0.1 \times [R(\langle1,2\rangle, U, \langle1,1\rangle) + \gamma \times U_{UR}(\langle1,1\rangle)] \\
+ 0.1 \times [R(\langle1,2\rangle, U, \langle1,2\rangle) + \gamma \times U_{UR}(\langle1,2\rangle)] \\
= 0.8 \times [+1.0 + \gamma \times U_{UR}(\langle2,2\rangle)] \\
+ 0.1 \times [-0.04 + \gamma \times U_{UR}(\langle1,1\rangle)] \\
+ 0.1 \times [-0.04 + \gamma \times U_{UR}(\langle1,2\rangle)] \\
= +0.792 + \gamma \times [0.8 \times U_{UR}(\langle2,2\rangle) + 0.1 \times U_{UR}(\langle1,1\rangle) + 0.1 \times U_{UR}(\langle1,2\rangle)]
\]
Example

Policy $\Pi_{UR} = \text{Go up if you’re in row 1, otherwise go right}$

$$U_{UR}(<2,1>) = 0.8 \times [R(<2,1>,U,<2,2>) + \gamma \times U_{UR}(<2,2>)] + 0.1 \times [R(<2,1>,U,<2,1>) + \gamma \times U_{UR}(<2,1>)] + 0.1 \times [R(<2,1>,U,<1,1>) + \gamma \times U_{UR}(<1,1>)]$$

$$= 0.8 \times [+1.0 + \gamma \times U_{UR}(<2,2>)] + 0.1 \times [-1.0 + \gamma \times U_{UR}(<2,1>)] + 0.1 \times [-0.04 + \gamma \times U_{UR}(<1,1>)]$$

$$= +0.696 + \gamma \times [0.8 \times U_{UR}(<2,2>) + 0.1 \times U_{UR}(<2,1>) + 0.1 \times U_{UR}(<1,1>)]$$
Example

Policy $\Pi_{UR} = \text{Go up if you're in row 1, otherwise go right}$

$$U_{UR}(<2,2>) = 0.8 \times [R(<2,2>, U, <2,2>) + \gamma \times U_{UR}(<2,2>)]$$
$$\quad + 0.1 \times [R(<2,2>, U, <2,2>) + \gamma \times U_{UR}(<2,2>)]$$
$$\quad + 0.1 \times [R(<2,2>, U, <2,1>) + \gamma \times U_{UR}(<2,1>)]$$
$$= 0.8 \times [+1.0 + \gamma \times U_{UR}(<2,2>)]$$
$$\quad + 0.1 \times [+1.0 + \gamma \times U_{UR}(<2,2>)]$$
$$\quad + 0.1 \times [-1.0 + \gamma \times U_{UR}(<2,1>)]$$
$$= +0.80 + \gamma \times [0.9 \times U_{UR}(<2,2>) + 0.1 \times U_{UR}(<2,1>)]$$
Example

Policy $\Pi_{UR} = \text{Go up if you're in row 1, otherwise go right}$

$U^{ UR}(<1,1>) = -0.136 + \gamma \times [0.8 \times U^{ UR}(<1,2>) + 0.1 \times U^{ UR}(<1,1>) + 0.1 \times U^{ UR}(<2,1>)]$

$U^{ UR}(<1,2>) = +0.792 + \gamma \times [0.8 \times U^{ UR}(<2,2>) + 0.1 \times U^{ UR}(<1,1>) + 0.1 \times U^{ UR}(<1,2>) ]$

$U^{ UR}(<2,1>) = +0.696 + \gamma \times [0.8 \times U^{ UR}(<2,2>) + 0.1 \times U^{ UR}(<2,1>) + 0.1 \times U^{ UR}(<1,1>) ]$

$U^{ UR}(<2,2>) = +0.800 + \gamma \times [0.9 \times U^{ UR}(<2,2>) + 0.1 \times U^{ UR}(<2,1>) ]$
Example

Policy $\Pi_{UR} = \text{Go up if you’re in row 1, otherwise go right}$

If we use $A$ for $U_{UR}(<1,1>)$, $B$ for $U_{UR}(<2,1>)$, $C$ for $U_{UR}(<1,2>)$ and $D$ for $U_{UR}(<2,2>)$

(to make it easier to read)

\[
A = -0.136 + \gamma \times [0.8 \times C + 0.1 \times A + 0.1 \times B]
\]
\[
C = +0.792 + \gamma \times [0.8 \times D + 0.1 \times A + 0.1 \times C]
\]
\[
B = +0.696 + \gamma \times [0.8 \times D + 0.1 \times B + 0.1 \times A]
\]
\[
D = +0.800 + \gamma \times [0.9 \times D + 0.1 \times B]
\]
Example

Policy $\Pi_{UR} = \text{Go up if you're in row 1, otherwise go right}$

\[
0.136 = (0.1\gamma - 1)A + 0.1\gamma B + 0.8\gamma C
\]
\[
-0.792 = 0.1\gamma A + (0.1\gamma - 1)C + 0.8\gamma D
\]
\[
-0.696 = 0.1\gamma A + (0.1\gamma - 1)B + 0.8\gamma D
\]
\[
-0.800 = 0.1\gamma B + (0.9\gamma - 1)D
\]

Four equations, four unknowns, for a given $\gamma$ can now solve
(for example, with Gaussian Elimination)
Example: $\gamma = 0.5$

Policy $\Pi_{UR} =$ Go up if you’re in row 1, otherwise go right

\begin{align*}
0.136 &= -0.95A + 0.05B + 0.4C \\
-0.792 &= 0.05A + 0.95C + 0.4D \\
-0.696 &= 0.05A - 0.95B + 0.4D \\
-0.800 &= 0.05B - 0.55D
\end{align*}

Solve for A, B, C, and D to get the $U^{\Pi_{UR}}$ values for each state
MDPs and Reinforcement Learning: Game Plan

• How to figure out value of a given $\Pi$ if you know $S$, $R$, and $P$
  • One approach: Gaussian Elimination

• How to figure out $\Pi^*$ if you know $S$ and $P$ but not $R$

  ($|S|$ finite and ~small)
Properties of $\Pi^*$

• Optimal Policy $\Pi^*$

\[
\Pi^*(s) = \mathbb{E} \sum_{t=0}^{\infty} \gamma^t R(s_t, \Pi^*(s_t), \text{apply}(s_t, \Pi^*(s_t)))
\]

\[
= \text{argmax}_\Pi U^\Pi(s)
\]

\[
= \text{argmax}_{a \in A} \sum_{s' \in S} P(s'|s,a)[R(s,a,s') + \gamma U^\Pi(s')]
\]

[This says that some action gives the best outcome. Find it. To do so consider each action $a$ and figure out its expected immediate reward $R(s,a,s')$ together with what you would get if you acted optimally from that point onwards $U^\Pi(s')$. However that second term is what you get one step in the future, so you have to discount it by $\gamma$.]

• Bellman Equation

\[
U^*(s) = U^\Pi^*(s) = \max_{a \in A} \sum_{s' \in S} P(s'|s,a)[R(s,a,s') + \gamma U^\Pi^*(s')]
\]

[This is the same as for $\Pi^*(s)$ above, just max rather than argmax]
[This will be important – it is the foundation of various algorithms]
If you write down $U^*$ for every state it no longer gives a set of linear equations to which you can apply Gaussian elimination.
If you write down $U^*$ for every state it no longer gives a set of linear equations that you can apply Gaussian elimination to.

What to do?

Policy Iteration algorithm  
(among various algorithms for doing this)

\[
U^*(s) = U^n(s) = \max_{a \in A} \sum_{s' \in S} P(s'|s,a)[R(s,a,s') + \gamma U^*(s')]
\]