Multi-Armed Bandit

What strategy do I use to pick a sequence of a_i?
View Multi-Armed Bandit as a Single-State MDP

\[R(s,a_i,s) \]
\[P(s|s,a_i)=1.0 \]
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Pull each arm once

Algorithm:

For i ← 1 to n
{ Sum_i ← R(arm_i); N_i ← 1 }; N ← n /* Initialization */

Loop Forever

best ← argmax \[\frac{\text{Sum}_i}{N_i} + \frac{g(N)}{\sqrt{N_i}} \] \[g(N) = \sqrt{2 \log (1 + N \log^2 N)} \]

pull arm a_{best} and get reward r

\text{Sum}_{best} ← \text{Sum}_{best} + r; \ N_{best} ← N_{best} + 1; \ N ← N+1
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Algorithm:

For $i \leftarrow 1$ to n
\{ $\text{Sum}_i \leftarrow \text{R}(\text{arm}_i)$; $\text{N}_i \leftarrow 1$; $\text{N} \leftarrow n$ \} /* Initialization */

Loop Forever

$\text{best} \leftarrow \arg\max_{1 \leq i \leq n} \left[\frac{\text{Sum}_i}{\text{N}_i} + \sqrt{\frac{2 \ln(N)}{\text{N}_i}} \right]$ \hspace{1cm} $g(N) = \sqrt{2 \log (1 + N \log^2 N)}$

pull arm a_{best} and get reward r

$\text{Sum}_{\text{best}} \leftarrow \text{Sum}_{\text{best}} + r$; $\text{N}_{\text{best}} \leftarrow \text{N}_{\text{best}} + 1$; $\text{N} \leftarrow \text{N} + 1$

$g(N) = c \sqrt{\ln(N)}$

[c = $\sqrt{2}$]
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Why $g(N) = \sqrt{2 \log (1 + N \log^2 N)}$?

Why $g(N) = c \sqrt{\ln(N)}$?
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Why $g(N) = \sqrt{2 \log(1 + N \log^2 N)}$?

Why $g(N) = c \sqrt{\ln(N)}$?

Average reward: $\frac{\sum_{i=1}^{n} \text{Sum}_i}{N}$
Multi-Armed Bandits:
Upper Confidence Bound (UCB) Heuristic

Why $g(N) = \sqrt{2 \log (1 + N \log^2 N)}$?

Why $g(N) = c \sqrt{\ln(N)}$?

Average reward: $\frac{\sum_{i=1}^{n} \text{Sum}_i}{N}$

Average reward for a policy π: $\mu_{\pi}^N = E_{\pi} \left[\frac{\sum_{i=1}^{n} \text{Sum}_i}{N} \right]$
Multi-Armed Bandits:
Upper Confidence Bound (UCB) Heuristic

Why \(g(N) = \sqrt{2 \log (1 + N \log^2 N)} \)?

Why \(g(N) = c \sqrt{\ln(N)} \)?

Average reward:
\[
\frac{\sum_{i=1}^{n} \text{Sum}_i}{N}
\]

Average reward for a policy \(\pi \):
\[
\mu_\pi = \mathbb{E}_\pi \left[\frac{\sum_{i=1}^{n} \text{Sum}_i}{N} \right]
\]

Average expected reward for always picking optimal arm:
\(\mu_{\text{best}} \)
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Why \(g(N) = \sqrt{2 \log(1 + N \log^2 N)} \)?
Why \(g(N) = c \sqrt{\ln(N)} \)?

Average reward: \(\frac{\sum_{i=1}^{n} \text{Sum}_i}{N} \)

Average reward for a policy \(\pi \): \(\mu_N^{\pi} = E_\pi \left[\frac{\sum_{i=1}^{n} \text{Sum}_i}{N} \right] \)

Average expected reward for always picking optimal arm: \(\mu^{\text{best}} \)

Regret for a policy: \(\text{regret}_N^{\pi} = \mu^{\text{best}} - \mu_N^{\pi} \)

How much exploration costs you
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Why $g(N) = \sqrt{2 \log (1 + N \log^2 N)}$?

Why $g(N) = c \sqrt{\ln(N)}$?

Known Result:
$\text{Regret}_N^\pi = \Omega(\log(N))$

Your expected regret will grow at least logarithmically with N.
Multi-Armed Bandits: Upper Confidence Bound (UCB) Heuristic

Why \(g(N) = \sqrt{2 \log (1 + N \log^2 N)} \)?

Why \(g(N) = c \sqrt{\ln(N)} \)?

Known Result:

\[
\text{Regret}_N^{\pi} = \Omega(\log(N))
\]

\[
\text{Regret}_N^{\text{UCB}(g(N))} = O(\log(N))
\]

UCB with these \(g(N) \) functions have regret that grows at worst logarithmically with \(N \)

Your expected regret will grow at least logarithmically with \(N \)
Monte Carlo Tree Search (MCTS)
(Section 5.4)
Monte Carlo Tree Search (MCTS) (Section 5.4)

Application of multi-armed bandits
Timeline of Key Ideas in Game Tree Search

1948 Alan Turing Look ahead and use an evaluation function
1950 Claude Shannon Game tree search
1956 John McCarthy Alpha-beta pruning
1959 Arthur Samuel Learn evaluation function (Reinforcement learning)

...
1997: Deep Blue defeats Gary Kasparov (3½–2½)

Game tree search with alpha-beta pruning plus lots of enhancements
1997: **Deep** Blue defeats Gary Kasparov (3½–2½)
(Not “deep” as in “deep learning”)
(Deep as in its ancestor, Deep Thought)

Game tree search with alpha-beta pruning
plus lots of enhancements
Go?

Branching factor is in the 100s

Evaluation function is difficult because payoff may be very far away

Need new ideas
<table>
<thead>
<tr>
<th>Year</th>
<th>Author(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>Bruce Ballard</td>
<td>Lookahead for probabilistic moves</td>
</tr>
<tr>
<td>1987</td>
<td>Bruce Abramson</td>
<td>Evaluation by expected outcome (repeated simulation)</td>
</tr>
<tr>
<td>1992</td>
<td>Gerald Tesauro</td>
<td>TD-Gammon (reinforcement learning, self-play)</td>
</tr>
<tr>
<td>1992</td>
<td>Bernd Brugmann</td>
<td>Monte Carlo Go (simulated annealing)</td>
</tr>
<tr>
<td>1999</td>
<td>U of Alberta</td>
<td>Simulation in Poker</td>
</tr>
<tr>
<td>1999</td>
<td>Matt Ginsberg</td>
<td>Simulation in Bridge</td>
</tr>
<tr>
<td>2002</td>
<td>Brian Sheppard</td>
<td>Simulation in Scrabble</td>
</tr>
<tr>
<td>2006</td>
<td>Levente Kocsis and Csaba Szepesvár</td>
<td>Multi-armed bandits for Monte-Carlo tree search</td>
</tr>
</tbody>
</table>
2016: AlphaGo defeats Lee Sedol (4-1)
Key ideas of Monte Carlo Tree Search:

1. View move selection as a multi-armed bandit problem
Multi-Armed Bandit

$M_1, M_2, M_3, M_4, \ldots, M_n$

$a_1, a_2, a_3, a_4, \ldots, a_n$

$R_1, R_2, R_3, R_4, \ldots, R_n$
Multi-Armed Bandit for Game Tree Search

\[a_1, a_2, a_3, a_4, \ldots, a_n \]

\[M_1, M_2, M_3, M_4, \ldots, M_n \]

\[R_1, R_2, R_3, R_4, \ldots, R_n \]
Multi-Armed Bandit for Game Tree Search

What move should I try?
Key ideas of Monte Carlo Tree Search:

1. View move selection as a multi-armed bandit problem
2. Evaluate moves by simulating games
Multi-Armed Bandit for Game Tree Search

What move should I try on each simulated game?
Monte-Carlo Tree Search (MCTS) Terms

• Leaf node: A state in the game tree that has successors for which no games have been simulated
• Terminal node: End of game state
• Playout/rollout: Simulating a game from a leaf node to a terminal node
Three Steps in MCTS

• Selection: Make move choices until a leaf node S is reached
Three Steps in MCTS

(a) Selection
Three Steps in MCTS

• Selection: Make move choices until a leaf node S is reached
• Expansion: Create a new successor state S' for an untried action
 Simulation: Play a game until you reach a terminal node
Three Steps in MCTS

(a) Selection
(b) Expansion and Simulation
black wins
Three Steps in MCTS

• Selection: Make move choices until a leaf node S is reached
• Expansion: Create a new successor state S’ for an untried action
 Simulation: Play a game until you reach a terminal node
• Backpropagation: Update game statistics for the path from S’ up to the root
Three Steps in MCTS

(a) Selection
(b) Expansion and Simulation
(c) Backpropagation
MCTS(state):

while TIME-REMAINING() do
 leaf ← SELECT(tree)
 child ← EXPAND(leaf)
 result ← SIMULATE(child)
 BACKPROPAGATE(result, child)

return argmax \#playouts(apply(a, state))_{a \in A}

Which move gives the game state with most playouts
Three Steps in MCTS

How do we pick moves?

(a) Selection
(b) Expansion and Simulation
(c) Backpropagation
Remember This?
(UCB)

Algorithm:

Pull each arm once
For i ← 1 to n { Sum_i ← R(arm_i); N_i ← 1 }; N ← n /* Initialization */
Loop Forever

best ← \arg\max_{1 \leq i \leq n} \left[\frac{\text{Sum}_i}{N_i} + c \sqrt{\frac{\ln N}{N_i}} \right]

pull arm a_{best} and get reward r

Sum_{best} ← Sum_{best} + r; N_{best} ← N_{best} + 1; N ← N+1
Picking a Move During Selection and Expansion (UCT – Upper Confidence bound applied to Trees)

\[
\text{Sum}_i = \# \text{ of wins} \\
N_i = \# \text{ of times } i \text{ was tried} \\
N = \# \text{ of simulations thus far (N(parent(i)))}
\]

\[
\text{best} \leftarrow \text{argmax}_{1 \leq i \leq n} \left[\frac{\text{Sum}_i}{N_i} + c \sqrt{\frac{\ln N}{N_i}} \right]
\]

Lets you control how much exploration
Three Steps in MCTS

(a) Selection
(b) Expansion and Simulation
(c) Backpropagation

How do we pick moves?
Picking a Move During Simulation

- Light playout: Pick uniformly at random

- Heavy playout: Make a biased selection
 - Simulation statistics
 - Game knowledge

Trade off: Slower run time vs missing a move
Benefits

• Doesn’t use an evaluation function!
• Time is linear in depth
• Handles large number of actions
• Let’s you make a move when a timer goes off (to manage time) (‘’anytime algorithm’’)

AlphaGo / AlphaZero

• Truncated playouts and used (learned) evaluation function
• UCB with additional term for (learned) probability of win