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Knowledge and Reasoning

Knowledge and Reasoning:
humans are very good at acquiring new information by
combining raw knowledge, experience with reasoning.
Al-slogan: “Knowledge is power” (or “Data is power”?)

Examples:

Medical diagnosis --- physician diagnosing a patient
infers what disease, based on the knowledge he/she
acquired as a student, textbooks, prior cases

Common sense knowledge / reasoning ---
common everyday assumptions / inferences
e.g., “lecture starts at four” infer pm not am;
when traveling, I assume there is some way to get from the

airport to the hotel. 3



Logical agents:
Agents with some representation of the
complex knowledge about the world / its environment,
and uses inference to derive new information from that
knowledge combined with new inputs (e.g. via perception).

Key issues:
1- Representation of knowledge
What form? Meaning / semantics?
2- Reasoning and inference processes
Efficiency.




Knowledge-base Agents

Key 1ssues:
— Representation of knowledge = knowledge base
— Reasoning processes = inference/reasoning

Knowledge base = set of sentences 1n a formal language
representing facts about the world(*)

(*) called Knowledge Representation (KR) language



Key aspects:

Knowledge bases

— How to add sentences to the knowledge base

— How to query the knowledge base

Both tasks may involve inference — i.e. how to derive new
sentences from old sentences

Logical agents — inference must obey the fundamental
requirement that when one asks a question to the knowledge
base, the answer should follow from what has been told to the
knowledge base previously. (In other words the inference
process should not “make things” up...)

Inference engine

Knowledge base

~———— gdomain-independent algorithms

~s———— domain-specific content



A simple knowledge-based agent

function KB- AGENT( percept) returns an action
static: KB, a knowledge base
t, a counter, initially 0, indicating time

TELL( KB, MAKE- PERCEPT-SENTENCE( percept, t))
action « ASK( KB, MAKE-ACTION-QUERY())
TELL(KB, MAKE- ACTION-SENTENCE( action, t))
t—t+1

return action

The agent must be able to:
— Represent states, actions, etc.
— Incorporate new percepts
— Update internal representations of the world
— Deduce hidden properties of the world
— Deduce appropriate actions



KR language candidate:
logical language (propositional / first-order) combined
with a logical inference mechanism

How close to human thought? (mental-models / Johnson-
Laird).

What is “the language of thought”?
Greeks / Boole / Frege --- Rational thought: Logic?

Why not use natural language (e.g. English)?

We want clear syntax & semantics (well-defined
meaning), and, mechanism to infer new information.
Soln.: Use a formal language.



“Advice-Taker”

1958 / 1968 — John McCarthy: “Programs with Common Senke” -
agents use logical reasoning to mediate between percepts gnd a

Idea: Impart knowledge to a program in the form of declarativ
(logical) statements (“what” instead of “how”); program

uses general reasoning mechanisms to process and act on this

information.

E.g. Formalize ™z is at y” using predicate at, i.e., at(z,y)
at defined by its properties, e.g., at(x,y) A at(y, z) — at(.

Problems??

, 2)

Consider: to-the-right-of(x.,y)



Agent / Intelligent System Design

Craik (1943) The Nature of Explanation

If the organism carries a “small-scale model” of external realit
and of its own small possible actions within its head, it is able

try out various alternatives, conclude which is the best of then

react to future situations before they arise, utilize the knowled
of the past events in dealing with the present and future, and fn
every way to react in a much fuller, safer, and more competen
manner to the emergencies which face it.

Alt. view: against representations — Brooks (1989)

10



Representation Language

preferably:

— expressive and concise

— unambiguous and independent of context

— have an effective procedure to derive new information
not easy to meet these goals . ..
propositional and first-order logic meet some of the criteria
incompleteness / uncertainty is key — contrast with

programming languages.

11



Procedural style:

printColor(snow) :- !, write("It’s white.").
printColor(grass) :- !, write("It’s green.").
printColor(sky) :— !, write("It’s blue.").
printColor(X) :- write("Beats me.").

Knowledge-based alternative:
printColor(X) :-

color(X,Y), !, write("It’s "), write(Y), wrife("

color(snow,white) .
color(grass,green).

or (sky,yellow) .

12



Logical Representation

Three components:
syntax
semantics (link to the world)

proof theory (“pushing symbols”)

To make it work: soundness and completeness.

13



Connecting Sentences to the World

Sentences = Sentence
Entails

Representation g g
_________ i __________.‘gl —
World 8 ]
Facts - Fact

Follows

Somewhat misleading: formal semantics brings sentence
down only to the primitive components

(propositions). (later)

14



Tenuous Link to Real World

input sentences

conclusions

All computer has are sentences (hopefully about the world).
Sensors can provide some grounding.
Hope KB unique model / interpretation: the real-world.

Often many more... (Aside: consider arithmetic.)

The “symbol grounding problem.” 15



More Concrete: Propositional Logic

Syntax: build sentences from atomic propositions, using
connectives A, V, 0, =, &,

(and / or / not / implies / equivalence (biconditional))

Eg: (wP)V(QAR)) =S

16



Semantics

P 0 -P PrNO PvQ P= Q0 P e 0
False False True False False True True
False True True False True True False
True False False False True False False
True True False True True True True

Note: = somewhat counterintuitive.
What's the truth value of “5 is even implies Sam is smart”?

True!

17



Validity and Inference

P H PvH (PvH)N-H (PvH)N -H) = P
False False False False True
False True True False True
True False True True True
True True True False True

Truth table for: Premises = Conclusion.
Shows ((PV H)N (—=H)) = P is valid
(True in all interpretations)

We write = ((PVH)N(-H)) =P

Compositional semantics



Models

A model of a set of sentences (KB) is a

in which each of the KB sentences e

With more and more sentences. the mod n
more and more like the “real-world” (or isomorphic to it).
/If a sentence a holds (is T'rue) in all models N
of a KB, we say that a is entailed by the KB.

« 1s of interest, because whenever KB is true in a world

a will also be True. Note: KB defines exactly the set

kVVe write: KB = a. of worlds we are interested in. /

Le.. Models(KB) C Models( (} ) 19



Proof Theory

Purely syntactic rules for deriving the logical consequences c
a set of sentences.

We write: KB F a, ie., a can be deduced

from KB or « is provable from KB.

Key property:
Both in propositional and in first-order logic we have a
proof theory (“calculus”) such that:

— and = are equivalent.

20



Proof Theory

If KB F o implies KB = «, we say the
proof theory is sound.

It KB

— « Implies K B + «, we say the

proof theory is complete.

Why so remarkable / important?

21



Soundness and Completeness

Allows computer to ignore semaftics and “just push symbols™!
In propositional logic, truth ta

In first-order, models can be infinite!

Proof theory: One or more inference rules with

zero or more axioms (tautologies / to get things “going.”).

Note: (1) This was Aristotle’s original goal ---
Construct infallible arguments based purely

on the form of statements --- not on the “meaning”
of individual propositions.

(2) Sets of models can be exponential size or worse,

compared to symbolic inference (deduction).
22



Example Proof Theory

One rule of inference: Modens Ponens
From a and o = [ it follows that [.

Semantic soundness easily verified. (truth table)

Axiom schemas:
(Ax. ) a= (= «a)
(Ax. II) ((a=(PB=79)= (a=0)=(a=17))).
(Ax. ITI) (—a= () = (~a= —0) = a.

Note: a, 3, v stand for arbitrary sentences. So,

infinite collection of axioms.

23



Now. a can be deduced from a set of sentences ®
iff there exists a sequence of applications of modens pon¢n

that leads from ® to o (possibly using the axioms).

One can prove that:
Modens ponens with the above axioms will generate exactl]y
all (and only those) statements logically entailed by .

So, we have a way of generating entailed statements
in a purely syntactic manner!

(Sequence is called a proof. Finding it can be hard ...)

24



(Ax. I) a= (0= a)
(Ax. II) ((a=(B=7))= (a=3)= (a=7))).
(Ax. ITI) (—ma = 3) = (ma = —=3) = «a.

Lemma. For any a, we have F (a = «).

Prootf.
(a=(a=a)=a)=(a=a=a) = a= «a (Ax. II)
a=(a=a)=a, (Ax. I
(a=a=a)=a=a, (M.P)

a=a=a) (Ax. I)
a = a (M.P.)

25



Illustrative example: Wumpus World

Performance measure (Somewhat whimsical!)
— gold +1000,
— death -1000 S ——

(falling into a pit or being eaten by the wumpus) *

Z
. 3 SSenen s | L
Environment i

Sensors:  Stench, Breeze, Glitter, Bump, Scream [perceptual inputs]

seen s Sl PIT

-1 per step, -10 for using the arrow oo

|
i

Rooms / squares connected by doors. sssss ZEmas

2 - —
Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy 1 gﬁo =l = ==
Glitter iff gold is in the same square START

1

n
w
I =N

Shooting kills wumpus if you are facing it
Shooting uses up the only arrow
Grabbing picks up gold if in same square
Releasing drops the gold in same square
Randomly generated at start of game. Wumpus only senses current room.

26

Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot



Fully Observable

Deterministic

Static
Discrete

Single-agent?

Wumpus world characterization

No — only local perception

Yes — outcomes exactly specified
Yes — Wumpus and Pits do not move
Yes

Yes — Wumpus is essentially a “natural feature.”

27
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Exploring a wumpus world

The knowledge base of the agent
consists of the rules of the
Wumpus world plus the percept
“nothing” in [1,1]

Boolean percept
feature values:
<0, 0, 0, 0, 0>

None, none, none, none, none

Stench, Breeze, Glitter, Bump, Scream

28



World “known” to agent

ttime=20
at tl1me .
.| sases Toms
z Z Breeze —
3 < —
NN
OK
S SS9 -
2 Stenen S @-’9’,
- - OK OK
Z Beeze — Z Breeze —
START

l T=0 The KB of the agent consists of
None, none, none, none, none the rules of the Wumpus world plus
the percept “nothing” in [1,1].
Scream gy inference, the agent’s knowledge
base also has the information that
[2,1] and [1,2] are okay.
Added as propositions. 29

Stench, Breeze, Glitter, Bump,



Further exploration

sses Comes
ssscs Zamn oK * | po

5'3(\99:9’, oI fB(\ae:el/ OK OK OK Oll'&/ P(?
START [II V_ g B .

t 2 3 4

None, none, none, none, none

None, breeze, none, none, none

A — agent
V — visited
Stench, Breeze, Glitter, Bump, Scream B - breeze

@ T =1 What follows?

Where next? Pit(2,2) or Pit(3,1)

30



T=

OK

SFI P? ¥
| OK OK OK OK
2| po =
1 2 3 4

Stench, none, none, none, none

Stench, Breeze, Glitter, Bump, Scream

Where is Wumpus?

Wumpus cannot be in (1,1) or in (2,2) (Why?)=» Wumpus in (1,3)
Not breeze in (1,2) = no pit in (2,2); but we know there is

pit in (2,2) or (3,1) =» pitin (3,1)
31



OK

We reasoned about the possible states

the Wumpus world can be in, given our | W
percepts and our knowledge of the rules | ?I“ ¥
of the Wumpus world. o%
I.e., the content of KB at T=3. -

What follows is what holds true in all those worlds that
satisfy what is known at that time T=3 about the
particular Wumpus world we are in.

Example property: P_in (3,1)
Models(KB) C Models(P_in_(3,1))

Essence of logical reasoning:
Given all we know, Pit_in_(3,1) holds.

(“The world cannot be different.”)

32




Formally: Entailment

Knowledge Base (KB) in the Wumpus World 2>

Rules of the wumpus world + new percepts

Situation after detecting nothing in [1,1], 5
moving right, breeze in [2,1]. L.e. T=1. .
wlm | P
Consider possible models for KB with respect to T—1
the cells (1,2), (2,2) and (3,1), with respect to a
the existence or non existence of pits
: (@]
3 Boolean choices = D;EI el
8 possible interpretations , .
(enumerate all the models or =T
“possible worlds” wrt Pitt location) L8 O =5
f z T . | %! ' : :

33



Is KB consistent with all

8 possible worlds? Worlds
that violate KB
\ (are inconsistent
with what we
g =0 know)
@ ‘ @
{ @
L Fe  (ee
~e

KB = Wumpus-world rules + observations (T=1)

Q: Why does world f—-.- 7 violate KB? 34




So, KB defines Entailment in Wumpus World

all worlds that

we hold possible.

Queries: we want to know the properties of those worlds.
That’s how the semantics of logical entailment is defined.

Models of the KB and al

L Note: \alpha 1
jlil;g holds in more
- models than KB.
j@gj That’s OK, but we
" 7 don’t care about
those worlds.

KB = Wumpus-world rules + observations
= "[1,2] has no pit", KB |=a1

— In every model in which KB is true, o, is True (proved by
“model checking”)



Wumpus models

KB = wumpus-world rules + observations
a2 ="[2,2] has no pit", this is only True in some
of the models for which KB is True, therefore KB yaz

Model Checking
Models of a2

\
N -

A model of KB where o2 does NOT hold!

36



Entailment via
“Model Checking”

Inference by Model checking —

We enumerate all the KB models and check if o, and a, are

True in all the models (which implies that we can only use it
when we have a finite number of models).

I.e. using semantics directly.

Models(KB) € Models( () )

KB = a

37



Example redux: More formal

Saers e
Saes oz oK o Do
~ Breeze — = Broere — OK OK oK oK
T AB | P?
i . v 3
t 2 3 4
None, none, none, none, none None, breeze, none, none, none
Stench, Breeze, Glitter, Bump, Scream A- agent
V — visited
B - breeze

How do we actually encode background
knowledge and percepts in formal language?

38



Wumpus World KB

Define propositions:
Let P;; be true if there is a pit in [i, j].
Let B;; be true if there is a breeze in [i, j].

Sentence 1 (R1): - P, ‘Given.]
Sentence 2 (R2): - B, Observation T = 0.]
Sentence 3 (R3): B,, ‘Observation T = 1.]

"Pits cause breezes in adjacent squares”
Sentence 4 (R4): B, < (P, v P,))
Sentence S (RS): B,; < (P, vP,,vP;))
etc.
Notes: (1) one such statement about Breeze for each square.
(2) similar statements about Wumpus, and stench
and Gold and glitter. (Need more propositional
letters.) 39



What about Time? What about Actions?

Is Time represented?
No!
Can include time in propositions:
Explicit time P, st B; it L;;¢ etc.
Many more props: O(TNE) (L;,  for agent at (i) at time t)
Now, we can also model actions, use props: Move(i ,j .,k .1 ,t)
E.g. Move(1,1,2,1,0)

What knowledge axiom(s) capture(s) the effect of an Agent
move?

Move(i, j9 k9 1 9t) = (_' L(la j9 t+1) A L(ka 19 t+1))
Is this it?

What about i, j, k, and 1?
What about Agent location at time t? 40



d: Move implies a change in the world state;
a change in the world state, implies a move occurred!

Move(, j, k, 1,t) < (LG, j, ) A = L@, j, t+1) A L(k, 1, t+1))
For all tuples (i, j, k, 1) that represent legitimate possible moves.
Eg. (1,1,2,1) or (1,1, 1, 2)

Improve

Still, some remaining subtleties when representing time and
actions. What happens to propositions at time t+1 compared to at
time t, that are *not* involved in any action?
E.g. P(1, 3, 3) is derived at some point.

What about P(1, 3, 4), True or False?

R&N suggests having P as an “atemporal var” since it cannot change over

time. Nevertheless, we have many other vars that can change over time,
called “fluents”.

Values of propositions not involved in any action should not
change! “The Frame Problem” / Frame Axioms R&N 7.7.1 "



Successor-State Axioms

Axiom schema:
F is a fluent (prop. that can change over time)

For example:

Lil-ll — ([ji,l A (=Forward' Vv Bump'™!))
V(L] 5 A (South® A Forward"))
V(L A (West! A Forward"))

i.e. L_1,1 was “as before” with [no movement action or bump into wall]
or resulted from some action (movement into L._1,1).

42



Actions and inputs up to time 6 Some exam.ple inferences
Note: includes turns! Sectln 7.7.1 R&N

beine 0K _

In milliseconds, with modern SAT solver.




Alternative formulation: Situation Calculus

\\\ R&N 10.4.2
] —
1Sy
\ \l \
~_ \\ ,\\ B Result(Resul«(S,, Forward),
T~ r— Turn(Right))
@ r ~~— T
\%Q\ \Q n(Right)
?\\\ Result(S,, Forwar
\\Q\ Forward
~—

So

No explicit time. Actions are what changes the world
from “situation” to “situation”. More elegant, but

still need frame axioms to capture what stays the same.
Inherent with many representation formalisms: “physical”
persistance does not come for free! (and probably shouldn’t) 44



Inference by enumeration / “model checking”
Style 1

The goal of logical inference is to decide whether KB |= a, for some o.

For example, given the rules of the Wumpus World, is P,,

entailed? Relevant propositional symbols:

R2: =B
R3:B, Models(KB) C Models( P22)

"Pits cause breezes in adjacent squares"
R4:B,,; « (P, v Py
R5:B,; « (P v PyvPy)

Inference by enumeration. We have 7 relevant symbols
Therefore 27 = 128 interpretations.

Need to check if P22 is true in all of the KB models
(interpretations that satisfy KB sentences).

Q.: KB has many more symbols. Why can we restrict ourselves

to these symbols here? gyt pe careful, typically we can’t!! 45



All equivalent

1) KBF « entailment Prop. /FO Logic

2) M(KB) C M(«) by defn. / semantic proofs / truth tables
“model checking” /enumeration

(style I, R&N 7.4.4)
3) F(KB = «) deduction thm. R&N 7.5
4) KBF o soundness and completeness

logical deduction / symbol pushing
proof by inference rules (style 1I)
e.g. modus ponens (R&N 7.5.1)

5) (KB A = «) 1is inconsistent Proof by contradiction
use CNF / clausal form
Resolution (style III, R&N 7.5)
SAT solvers (style IV, R&N 7.6)

most effective
46



Proof techniques

M(KB) € M(«a) by defn. / semantic proofs / truth tables
“model checking”
(style I, R&N 7.4.4) Done.

soundness and completeness

KB I~ . . .
“ logical deduction / symbol pushing
proof by inference rules (style 1I)
¢.g. modus ponens (R&N 7.5.1)
(KB A = «) 1is inconsistent Proof by contradiction

use CNF / clausal form
Resolution (style III, R&N 7.5)

SAT solvers (style IV, R&N 7.6)

most effective
477



Aside

Standard syntax and semantics for propositional
logic. (CS-2800; see 7.4.1 and 7.4.2.)

Syntax:




Semantics

Note: Truth value of a sentence 1s built from its
parts “compositional semantics”

P Q -P [ PANQ PVQ| P = Q|P & Q
false| false | true | false | false | true true
false| true | true | false | true true false
true | false | false| false | true | false false
true | true | false| true | true true true

49



Logical equivalences

(aAB) = (BAa) commutativity of A
(aV ) = (BVa) commutativity of V
((aAB)ANvy) = (A (B A7y)) associativity of A
(aVvpB)Vy) = (aV(BVy)) associativity of V
—(—a) = a double-negation elimination
(@ = B) = (-8 = —a) contraposition
(@ = B) = (—a V) implication elimination  (*)
(¢ & B) = ((« = B)A(B = «)) biconditional elimination
(A f) = (~aV—fF) de Morgan
“(aV fp) = (raA—fF) de Morgan
(@A (BVY) = ((aANB)V(aAy)) distributivity of A over V
(a@V(BAY)) = ((aVB)A(aVy)) distributivity of V over A

(*) key to go to clausal (Conjunctive Normal Form)
Implication for “humans”; clauses for machines.
de Morgan laws also very useful in going to clausal form.

50



KBatT=1: Style 11: Proot by inference rules

R3: B,

RS: B,y < P, vP,,vP;))

How can we show that KRF - P, ?
R4: B1,1 == (P1,2 \' Pz,1)
It follows (bicond elim)
B, = ®,vPDA®P,VvP,)= B,
And-elimination (7.5.1 R&N):
(P, vP)= By,
By contrapositive:
By =@, VP,
Thus (de Morgan):
By = (P, APy
By Modus Ponens using R2, we get
(_‘Pl,z A% P2,1)
Finally, by And-elimination, we get:
2Py,

Modus Ponens (MP)

OK

P?

OK

v_|ams | P?

Wumpus world
atT=1

Note: In formal proof,
every step needs to be

justified.
51



Length of Proofs

Why bother with inference rules? We could always use a truth table
to check the validity of a conclusion from a set of premises.

But, resulting proof can be much shorter than truth table method.

Consider KB:
pl,pl—=p2, p2—=p3, ...,p(n1)—pn

To prove conclusion: p n

Inference rules: n-1 MPsteps  Truth table: 2"

Key open question: Is there always a short proof for any valid

conclusion? Probably not. The NP vs. co-NP question.
(The closely related: P vs. NP question carries a $1M prize.)

52



First, we need a conversion to Conjunctive Style III: Resolution
Normal Form (CNF) or Clausal Form.

Let’s consider converting R4 in clausal form:
R4: B1,1 < (P1,2 \' Pz,1)

We have:
B 1= (P, VP,

which gives (implication elimination): oK P?
(=B V P1,z VP,

OK

v_|ams | P?

Also

(P, vP)= By,
which gives:

(- (P1,2 VP 2,1) \% B1,1)
Thus,

(- P1,2 A% PZ,I) \% B1,1
leaving,

(- P1,2 \% B1,1 )

(- P2,1 \% B1,1 )

Wumpus world
atT=1

(note: clauses in red) 53



KBatT=1:
R1: ﬂPl’l
R2: ﬂBl,l

R3: B,

RS: B,y < (P, vP,,vP;))

OK

i P?
KB at T=1 in clausal form:
R1: -P, > = P9
R2: =B, V_l4/B -
R3: B,
Rda: =B, VP VP, Wumpus world
R4b: - P, VB, atT=1

R4c: - PZ’1 vV B1,1

RSa: -B,, VP, VP,,VP;,
RSb: —P,, VB,
RS¢: =P, VB,,
RSd: —P,,VB,,



How can we show that KRF =P, ?

Proof by contradiction:
Need to show that (KB A P ;) 1s
inconsistent (unsatisfiable).

Resolution rule:

(o Vp)and (BV —p)

gives resolvent (logically valid conclusion):
(o V P)

If we can reach the empty clause, then KB
is inconsistent. (And, vice versa.)

55



KB at T=1 in clausal form:

R3: B,,

R4a: - B,V P1 , Vv P,
R4b: - P,V B,

Rdc: - P2,1 V B1,1 oK

P?
9 9 9 9 ‘?
R5b: —P,, VB, v_las| P
RS¢: =P, VB,;
R5d: - P, VB,, Wumpus world
atT=1

Show that (KB A P, ,) is inconsistent.
(unsatisfiable)

R4b with P, , resolves to B, |,

which with R2, resolves to the empty clause, [J .
So, we can conclude KB F — P ,.

(make sure you use “what you want to prove.”)



KB at T=1 in clausal form:
R1: -P,
R2: -B,,
R3: B,,
R4a: - B,V P1,2 VP,
R4b: - P;, VB,

OK

R4c: - P,; VB, b?
R5a: - B2,1 \% P1,1 \% P2,2 \% P3,1 OK OK
R5b: —P,,VB,, v |aB | P?

R5d: —P;, VB,, Wumpus world

Note that R5a resolved with R1, and atT=1
then resolved with R3, gives (P,, V P5 ).

Almost there... to show KB F (P,, V P;,), we need to show

KB A (= (P, VP;)))is inconsistent. (Why‘? Semantically?)

So, show KB A = P,, A = P5 1s inconsistent.

This follows from (P,, V P5); because in two more resolution
steps, we get the empty clause (a contradiction). 57



Length of Proofs

What is hard for resolution?

Consider:
Given a fixed pos. int. N

(P(i,1) V P(i,2) V ... P(i,;N)) fori=1,... N+I

(= P() V = P(@°))) forj=1, ... N;
i=1,... N+I;
=1, N+l;i=/=1

What does this encode?

Think of: P(1,)) for “object 1 1n location j”

Pigeon hole problem...

Provable requires exponential number of resolution

steps to reach empty clause (Haken 1985). Method “can’t count.” o



Style IV: SAT Solvers

Instead of using resolution to show that

KB A =~ a  isinconsistent,

modern Satisfiability (SAT) solvers operating on the clausal form
are *much™ more efficient.

The SAT solvers treat the set of clauses as a set of constraints
(disjunctions) on Boolean variables, i.e., a CSP problem!
Current solvers are very powerful. Can handle 1 Million+
variables and several millions of clauses.

Systematic: Davis Putnam (DPLL) + series of improvements
Stochastic local search: WalkSAT (issue?)

See R&N 7.6. “Ironically,” we are back to semantic model
checking, but way more clever than basic truth
assignment enumeration (exponentially faster)! 59



DPLL improvements
Backtracking + ...

1) Component analysis (disjoint sets of constraints? Problem
decomposition?)

2) Clever variable and value ordering (e.g. degree heuristics)

3) Intelligent backtracking and clause learning (conflict learning)

4) Random restarts (heavy tails in search spaces...)

5) Clever data structures

1+ Million Boolean vars & 10+ Million clause/constraints
are feasible nowadays. (e.g. Minisat solver)

Has changed the world of verification (hardware/software)
over the last decade (incl. Turing award for Clarke).
Widely used in industry, Intel, Microsoft, IBM etc. 60



Satistiability (SAT/CSP) or Inference?

Really solving the same problem but SAT/CSP view appears more effective.

KBE a iff M(KB) C M(a) iff (KB A —a) is unsat

Assume KB and « 1s in CNF (clausal form).
Note that: KB F (G A ) iff
(KB F () and (KB F v)
(consider defn. in terms of models)
So, can break conjunction in several queries, one for
each disjunction (clause). Each a call to a SAT solver to check
KB A = (11 V12 ... ) for consist. or equivalently
check KB A =11 A =12 ... (1.e. CNF form) for consistency.
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KBEIIVIR.Diff KBAGILA-I2..

The SAT solvers essentially views the KB as a set of constraints that
defines a subset of the set of all 2N possible worlds (N prop. vars.).

The query « also defines a subset of the 2N possible worlds. (Above
we used a single clause (11 V 12 ...) where L. is a var or its negation.)

The SAT/CSP solvers figures out whether there are any worlds

consistent with the KB constraints that do not satisfy the constraints

of the query. If so, than the query does not follow from the KB.
Aside: In verification, such a world exposes a bug.

If such worlds do not exist, then the query must be entailed by the KB.

(M(KB) C M(«) Search starts from query!)

Viewing logical reasoning as reasoning about constraints on the
way the “world can be” is quite actually quite natural! It’s definitely
a computationally effective strategy.



Addendum: Reflections on Inference,
Knowledge, and Data ca. 2012

In the logical agent perspective, we take the “knowledge-based”
approach.

We’ll have a knowledge base, capturing our world knowledge in a
formal language. We’ll use an inference procedure to derive new
information.

Representation has well-defined syntax and semantics / meaning.

How far are actual Al systems in the knowledge / reasoning
paradigm?

Specifically, where do Deep Blue, Watson, and Siri fit?
What about IR, Google Translate, and Google’s Knowledge Graph?

And, “shallow semantics” / Semantic Web?
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IBM’s Jeopardy! playing system.
Watson

OXFORD SSS
THE NOTABLE NAME THAT oo o COMPOSERS

DINDSALRS WOMEN l)liﬂﬁtlj[!l.lﬁ:m\' INSTRUMENT BY COUNTRY

$200 $200 $200 $200 $200 $200

$400 $400 $400 $400 $400 $400

$600 $600 $600 $600 $600 $600

$800 $800 $800 $800 $800 $800

$1000 $1000 $1000 $1000 $1000 $1000

The basic layout of the Jeopardy! game o=
board, using the dollar values from the first round

PHYSICS
REGARDING THIS DEVICE, ARCHIMEDES SAID, "GIVE ME A PLACE TO STAND ON, AND | WILL MOVE THE EARTH"

» HIDE CORRECT RESPONSE




Chris Welty from IBM on Watson and “understanding”

http://spectrum.ieee.org/podcast/at-work/innovation/what-is-toronto

See 4 min mark for discussion on “understanding.”
Till around min 11.
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Key aspects: Watson

1) Limited number of categories of types of questions
2) Waell-defined knowledge sources (Wikipedia; Encyclopedias;
Dictionaries etc.) Not: WWW (Contrast: Google Knowl. Graph)

3) Around 70 “expert” modules that handle different aspects of the
possible question and answers. 1000+ hypotheses

4) Final result based on a confidence vote.
5) Limited language parsing. Lot based on individual words (like IR).

6) Form of IR “+” (parsing; limited knowledge graph: “books have
authors” “movie has actors and director” “verb represents an
action” etc. )

7) Some game theory to reason about whether to answer

To some extent: Watson “understands”!
(It’s actually a bit of a problem for IBM... Clients expect too much!)
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Deep Blue  §peech understanding
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Interesting readings: Appendix on Al in Paul Allen’s autobiography.
Discusses the remaining challenges: mostly focused on
commonsense reasoning and knowledge representation.

New: Vulcan Ventures Al Institute.

Idea Man: A Memoir by the Cofounder of Microsoft

[Kindle Edition]
Paul Allen [+ (Author)

yz‘ Q Yol ooy [v) (78 customer reviews)
P l A I : Print List Price: $47-00
(1|ll = (']] Kindle Price: $799
1 DEA M
You Save: $9.01 (53%)
Sold by: Penguin Group (USA) LLC

click to LOOK INSIDE!

® Don't have a Kindle? Get your Kindle here.

Formats Amazon Price New from Used from

Kindle Edition $7.99 — -

kindle edition
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chemical properties. Indeed, existing artificial intelligence technologies can answer
questions that depend only on simple facts. (“How many chromosomes does a blue
jay have?”). But the most important elements of human knowledge involve much
more sophisticated constructions. Even cut-and-dried knowledge includes rough
statements of causality (“Too little sunlight can lead to stunted plants™), generality
(“Most birds can fly”), metaphor (“DNA is like a blueprint”), counterfactuals (“If
Earth’s gravity were halved, trees could be twice as tall”), rule knowledge (“If a cell
dies, its cell membrane disintegrates”), and prediction (“Mutations should increase in
the presence of radioactivity”).

Project Halo: Read biology textbook to be able to pass AP
Biology exam. Very challenging! At least, 5 to 10 more years.
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Additional Slides
Some examples of SAT solving

I.e. Propositional Reasoning Engines
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Application: | --- Diagnosis

* Problem: diagnosis a malfunctioning device
— Car
— Computer system
— Spacecraft

 where
— Design of the device is known

— We can observe the state of only certain parts of
the device — much is hidden




Model-Based, Consistency-Based Diagnosis

* |dea: create a logical formula that describes how
the device should work

— Associated with each “breakable” component Cis a
proposition that states “C is okay”

— Sub-formulas about component C are all conditioned or
C being okay
e A diagnosis is a smallest of “not okay” assumptions
that are consistent with what is actually observed




Consistency-Based Diagnhosis

1. Make some Observations O.

. Initialize the Assumption Set A to assert that
all components are working properly.

. Check if the KB, A, O together are
inconsistent (can deduce false).

. If so, delete propositions from A until
consistency is restored (cannot deduce false).
The deleted propositions are a diagnosis.

There may be many possible diagnoses



Example: Automobile Diaghosis

Observable Propositions:

EngineRuns, GasInTank, ClockRuns
 Assumable Propositions:
FuellineOK, BatteryOK, CablesOK, ClockOK
* Hidden (non-Assumable) Propositions:
GasIinEngine, PowerToPlugs
* Device Description F:
(GasInTank A FuellLineOK) = GaslnEngine
(GaslnEngine A PowerToPlugs) > EngineRuns
(BatteryOK A CablesOK) - PowerToPlugs
(BatteryOK A ClockOK) = ClockRuns
* Observations:
- EngineRuns, GasInTank, ClockRuns

Note: of course a highly simplified set of axioms.



(GasInTank A FuelLineOK) = GasInEngine
Exam P I e (GasInEngine A PowerToPlugs) = EngineRuns

Is F U Observations U Assumptions consistent?

F U {-EngineRuns, GasInTank, ClockRuns}
U { FuelLineOK, BatteryOK, CablesOK, ClockOK } = false

— Must restore consistency!

F U {—-EngineRuns, GasInTank, ClockRuns}
U { BatteryOK, CablesOK, ClockOK } = satisfiable

— = FuellineOK is a diagnosis

F U {-EngineRuns, GasInTank, ClockRuns}
U {FuelLineOK, CablesOK, ClockOK } = false

— = BatteryOK is not a diagnosis



Complexity of Diagnosis
* If Fis Horn, then each consistency test takes linear O(n)
time — unit propagation is complete for Horn clauses.

 Complexity = ways to delete propositions from
Assumption Set that are considered.

— Single fault diagnosis — O(n?)
— Double fault (7,) diagnosis — O(n3)
— Triple fault diagnosis — O(n#)

In practice, for non-Horn use SAT solver

for consistency check.

Horn clause: at most one positive literal. Also, consider =



NASA Deep Space One

e Autonomous diagnhosis & repair “Remote
Agent”

e Compiled systems schematic to 7,000 var
SAT problem

Caunch: October 15th, 1998 1 N AR AN A
.- Experiment: May 17-21 . \ = ey

TCA-2




Deep Space One

e afailed electronics unit
— Remote Agent fixed by reactivating the unit.

» afailed sensor providing false information
— Remote Agent recognized as unreliable and therefore correctly ignored.

e an altitude control thruster (a small engine for controlling the
spacecraft's orientation) stuck in the "off" position

— Remote Agent detected and compensated for by switching to a mode
that did not rely on that thruster.



Il --- Testing Circuit Equivalence

A B

Formal spec. OR

AL

A B

Do two circuits compute
the same function?

Circuit optimization

Is there input for which
the two circuits compute
different values?

(Satisfying assignment
will tell us. Reveals bug!)

Possible implementation
using hardware gates (invertor & nand)



Note: if consitent,
model reveals “bug”

in hardware design. C= ( Av B) Descr. of OR
C C C'=-(DANE)
| Descr. of
D=-4 Hardware.

wa|  E=B

VALY Our query: (C=C'

. -(C= C’) Doesqthis }lllold? )

D/\ /5 Yes iff negation with
= & KB is inconsistent.

What happens if you add (C=C)

A B A B instead of -(C =C")? Still OK?

Informally: Given the same inputs values for A and B,
logic specifies outputs (C and C’). Are there inputs for which

C and C’ differ?




lIl --- SAT Translation of
N-Queens

L
b @
* No attacks (columns): @

(~Q11 v ~Q21) @
(~Q11 v ~Q31) o

(~Q11 v ~Q41) &
i

* At least one queen each row:
(Q11vQ12vQl3v...vQls)
(Q21v Q22vQ23v...vQ28)

* No attacks (diag; need left and right):

(~Q11 v ~Q22) How about: No attacks (rows)
(~Q11 v ~Q33) (~Q11 v ~Q12)
(~Q11 v ~Q44) (~Q11 v ~Q13)

(~Q11 v ~Q14)

Redundant! Why? Sometimes slows solver.



* At least one queen each row: More compactly
(QilvQi2...vQiN) forl1<=i<=N

* No attacks (columns; “look in it column”):
(~Qjiv~Qj'i) forl<=i,jj<=Nandj=/=]

* No attacks (diag; need left and right):
(~Qijv~Qi'j’) forl<=i 0, j st |i=i|=[j-]| &i=/=V"&j=/=]

Or: in first order logic syntax, e.g., second constraint set:
Vivivi (i=/=7=Q; VvV -Q;)
with bounded type quantifier 1 <=1, j,j <= N

Really a compact “propositional schema.”
First-order logic for finite domains is equiv. to prop. logic.

For SAT solver, always “ground to propositional.”



IV --- SAT Translation of
At least one color per node i : Graph Coloring
(CilvQ_ i2vQ_i3v..vQ_iK)

At most one color per nodei :
(~C_ikv~Q_ik’) forallk=/=k

If node i and node j (=/=i) share an edge,
need to have different colors: Note: Translation from

o e o 1 __ v “problem” into SAT.
(“C_ ilv~Q_jl) foralll<=1<=K Reverse of usual

translation to show
NP-completeness.

C ik for node i has color k

Total # colors: K. Total # nodes: N. Works also for (easy)

polytime problems!



V --- Symbolic Model Checking

* Any finite state machine is characterized by a transition function
— CPU

— Networking protocol

* Wish to prove some invariant holds for any possible inputs

 Bounded model checking: formula is sat iff invariant fails k steps

in the future _
S, = vector of Booleans representing

1) Can go to CNF.
2) Equivalent to planning
as propositional inference 0 :Statex Input — State

state of machine at time ¢

SATPLAN y . State — {0,1}

(Kautz & Selman 1996) -1 o

7.7.4 R&N ( A8, = p(Sl.,Il.)) AS, A=y(S,)
The k-step plan i=0

Is satisfying assignment. No¢e. ) is just like our “move” earlier.
Axioms says what happens “next.”



A real-world example

From “SATLIB":

http:/ /www.satlib.org/benchm.html

SAT-encoded bounded model checking instances
(contributed by Ofer Shtrichman)

In Bounded Model Chacking (BMCy {BCCZ99],

a rather newly introduced problem in formal
methods, the task is to check whether a given
model M {typically a hardware design)} satisfies a
temporal property P in all paths with length less
or equal to some bound k. The BMC problem
can be efficiently reduced to a propositional
satisfigbility problem, and i fact if the property
is in The form of an invariant {Mmvariants are the
most common type of properties, and many other
temporal properties can be reduced to their form.
It has the form of 'it is always true that .. '},
it has a structure which & similar to many Al
planning problems.




Bounded Model Checking instance

The instance bme—-ibm-6.cenf, IBM LSU 1997:

p onf 51639 368352
—-170

~160 ie. ((notx,) or x;)

—150
_1-40 and ((not x,) or x;)

130 and ... etc.
—120
—1-80
—9150
—90140
—9130
—9-120
—9110
9100
—9—-160
—17 23 0
—17 22 0



10 pages later:

185 —90

185 -10

177 169 161 153 145 137 129 121 113 105 97
89 81 73 65 57 49 41

33251791 1850

186 —187 0
186 —188 0 \

(X177 OF X169 OF X151 OF X453 ...
or X,; Or Xg Or X, or (not x,g:))

clauses / constraints are getting more interesting...



4000 pages later:

10236 —10050 0
10236 —10051 0
10236 —10235 0
10008 10009 10010 10011 10012 10013 10014
10015 10016 10017 10018 10019 10020 10021
10022 10023 10024 10025 10026 10027 10028
—— % 10029 10030 10031 10032 10033 10034 10035
I 10036 10037 10086 10087 10088 10089 10090
L 10098 10099 10100 10101 10102 10103 10104
10105 10106 10107 10108 —55 —54 53 —52 —51 50
a 59-cnf 10047 10048 10049 10050 10051 10235 —10236 0
clause... 10237 —10008 0
10237 —10009 0
10237 —10010 0



Finally, 15,000 pages later:

—7 2600

7 —260 0

1072 1070 0

—15 —14 —-13 —-12 -11 —-100
—15-14 -13-12-1110 0
—15 —-14 —-13 1211 —-10 0
—15—-14 -13 -121110 0
—7—-6-5—-4-3-20
—7—-6-5—-4-320
—7—6-5-43-20
—7—6-5-4320

185 0 What makes this possible?

Note that: 2°9%0 =2 3160699437 - 109! 1"

The Chaff SAT solver (Princeton) solves
this instance in less than one minute.



Progress in Last 20 years

Significant progress since the 1990’s. How much?
Problem size: We went from 100 variables, 200 constraints (early 90’s)
to 1,000,000+ variables and 5,000,000+ constraints in 20 years

Search space: from 10730 to 10~300,000.
[Aside: “one can encode quite a bit in 1M variables.”]

Is this just Moore’s Law? It helped, but not much...
— 2x faster computers does not mean can solve 2x larger instances
— search difficulty does *not* scale linearly with problem size!
In fact, for O(2”n), 2x faster, how many more vars?
handles 1 more variable!!
Mainly algorithmic progress. Memory growth also key.

Tools: 50+ competitive SAT solvers available (e.g. Minisat solver)
See http://www.satcompetition.org/



Forces Driving Faster, Better SAT Solvers
Inference engines

From academically interesting to practically relevant “Real”
benchmarks, with real interest in solving them

Regular SAT Solver Competitions (Germany-89, Dimacs-93, China-9¢
SAT-02, SAT-03, ..., SAT-07, SAT-09, SAT-2011)

— “Industrial-instances-only” SAT Races (2008, 2010)

— A tremendous resource! E.g., SAT Competition 2006 (Seattle):
* 35+ solvers submitted, downloadable, mostly open source
* 500+ industrial benchmarks, 1000+ other benchmarks
* 50,000+ benchmark instances available on the Internet

Constant improvement in SAT solvers is the key to the success of,
e.g., SAT-based planning, verification, and KB inference.



