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Note: in the next two parts of RL, some of the 
figure/section numbers refer to an earlier edition of R&N 
with a more basic description of the techniques.  
 
The slides provide a self-contained description. 



Reinforcement Learning 
In our discussion of Search methods (developed for  
problem solving), we assumed a given State Space and 
operators that lead from one State to one or more 
Successor states with a possible operator Cost. 
 

The State space can be exponentially large but is in principle 
Known. The difficulty was finding the right path (sequence of  
moves). This problem solved by searching through the various 
alternative sequences of  moves. In tough spaces, this leads to 
exponential searches. 
 
Can we do something  totally different?? Avoid search… 
 



Why don’t we “just learn” how to make the right 
move in each possible state? 
 
In principle, need to know very little about 
environment at the start. Simply observe another 
agent / human / program make steps (go from 
state to state) and mimic! 
 
Reinforcement learning: Some of the earliest AI 
research (1960s). It works! Principles and ideas still 
applicable today. 
 



Environment we consider is a basic game (the simplest 
non-trivial game): 
 
Tic-Tac-Toe 
 
 
The question: Can you write a program that learns 
                         to play Tic-Tac-Toe? 
 
Let’s try to re-discover what Donald Michie did in 

1962. He did not even use a computer! He hand-
simulated one. 

The first non-trivial machine learning program! 
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Now, we don’t want… 

X’s turn 

O’s turn 

X 

3x3 Tic-Tac-Toe 
optimal play 

We start 3 moves per player in: 

Tic-tac-toe (or Noughts and 
crosses, Xs and Os)  

loss loss 



What else can we think of? 

Basic ingredients needed: 
1)   We need to represent board states. 
2)   What moves to make in different states. 

It may help to think a bit probabilistically … pick moves 
with some probability and adjust probabilities through a 
learning procedure … 



Learn from human opponent 

We could try to learn directly from human what 
moves to make… 
 

But, some issues: 
1)   Human may be a weak player. J We want to 

learn how to beat him/her! 
2)   Human may play “nought” (second player) 

and computer wants to learn how to play 
“cross” (first player). 

Answer: 
Let’s try to “just play” human against machine 
and learn something from wins and losses. 



To start: some basics of the “machine” 

For each board state where cross is on-move, 
have a “match box” labeled with that state. 
 
Requires a few hundred matchboxes. 



Each match box has a number of colored “beads” in it, each 
color represents a valid move for cross on that board. 

E.g. start with ten 
beads of each color 
for each valid move. 

1) To make a move, 
pick up box with label of 
current state, shake it, 
Pick random bead. Check 
color and make that move. 

2) New state, wait for 
human counter-move. 
New state, repeat above. 



Game ends when one of the parties has a win / 
loss or no more open spaces. 
 

This is how the machine plays. How well will it 
play? What is is doing initially? 
 
Machine needs to learn! How? Can you think of a 
strategy? The first successful machine learning 
program in history (not involving search)… 
 
Let’s try to come up with a strategy…What do we 
need to do? 
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Reinforcement Learning 

Works!!! J Don’t need that 
many games. Quite surprising! 



Comments 

Learning in this case took “advantage of”: 
 
1)   State space is manageable. Further reduced by 

using 1 state to represent all isomorphic states 
(through board rotations and symmetries). 

 
 

We quietly encoded some knowledge about tic-tac-toe! 



2) What if state space is MUCH larger? As for any 
interesting game… 
Options: 
a)   Represent board by “features.” I.e., number of 

various pieces on chess board but not their 
position.. It’s like having each matchbox 
represent a large collection of states. Notion of 
“valid moves” becomes a bit trickier. 

b)  Don’t store “match boxes” / states explicitly, 
instead learn a function (e.g. neural net) that 
computes the right move directly when given 
some representation of the state as input. 

c)   Combination of a) and b). 
d)  Combine a), b), and c) with some form of 

“look-ahead” search. 
 
 
 


