
Bart Selman
CS4700 1

CS 4700:
Foundations of Artificial Intelligence

Bart Selman
selman@cs.cornell.edu

Local Search

Readings R&N: Chapter 4:1 and 6:4

Bart Selman
CS4700 2

So far:
 methods that systematically explore the search space, possibly
 using principled pruning (e.g., A*)

Current best such algorithm can handle search spaces of up to 10100
 states / around 500 binary variables (“ballpark” number only!)

What if we have much larger search spaces?

 Search spaces for some real-world problems may be much larger
 e.g. 1030,000 states as in certain reasoning and planning tasks.

A completely different kind of method is called for --- non-systematic:

 Local search
 (sometimes called: Iterative Improvement Methods)

Bart Selman
CS4700 3

Intro example: N-queens Problem: Place N queens on an NxN
chess board so that no queen attacks
another.

Example solution for N = 8.

How hard is it to find
such solutions? What if N gets larger?

Can be formulated as a search problem.
Start with empty board. [Ops? How many?]
Operators: place queen on location (i,j). [N^2. Goal?]
Goal state: N queens on board. No-one attacks another.

N=8, branching 64. Solution at what depth?
N. Search: (N^2)^N Informed search? Ideas for a heuristic?

Issues: (1) We don’t know much about
the goal state. That’s what we are looking for!
(2) Also, we don’t care about path to solution!

What algorithm would you write to solve this?

N-Queens demo!

Bart Selman
CS4700 4

Local Search: General Principle
Key idea (surprisingly simple):

1) Select (random) initial state (initial guess at solution)
 e.g. guess random placement of N queens

2) Make local modification to improve current state
 e.g. move queen under attack to “less attacked” square

3) Repeat Step 2 until goal state found (or out of time)
 cycle can be done billions of times

Requirements:
–  generate an initial
 (often random; probably-not-optimal or even valid) guess
–  evaluate quality of guess
–  move to other state (well-defined neighborhood function)

 . . . and do these operations quickly
 . . . and don't save paths followed

Unsolvable if
out of time?

Not necessarily!
Method is incomplete.

Bart Selman
CS4700 5

Local Search

1)   Hill-climbing search or greedy local search
2)   Simulated annealing
3)   Local beam search
4)   Genetic algorithms (related: genetic programming)
5)   Tabu search (not covered)

Bart Selman
CS4700 6

Hill-climbing search

“Like climbing Everest in thick fog with amnesia”
 Keep trying to move to a better “neighbor”,

 using some quantity to optimize.

Note: (1) “successor” normally called neighbor.
 (2) minimization, isomorphic.
 (3) stops when no improvement but often better to just
 “keep going”, especially if improvement = 0

Bart Selman
CS4700 7

4-Queens
States: 4 queens in 4 columns (256 states)
Neighborhood Operators: move queen in column
Evaluation / Optimization function: h(n) = number of attacks / “conflicts”
Goal test: no attacks, i.e., h(G) = 0

Local search: Because we only consider local changes to the state
at each step. We generally make sure that series of local changes
can reach all possible states.

Initial state (guess).

Bart Selman
CS4700 8

8-Queens

1
2

3
3
2
2
3

2
2

2
2

2
0
2

Section 6.4 R&N (“hill-climbing with min-conflict heuristics”)
Pick initial complete assignment (at random)
Repeat

•  Pick a conflicted variable var (at random)
•  Set the new value of var to minimize the number of conflicts
•  If the new assignment is not conflicting then return it

(Min-conflicts heuristics) Inspired GSAT and Walksat

Representation: 8 integer variables giving positions of 8 queens in columns
(e.g. <2, 5, 7, 4, 3, 8, 6, 1>)

Bart Selman
CS4700 9

Remarks Local search with min-conflict heuristic works extremely well for
 N-queen problems. Can do millions and up in seconds. Similarly,
 for many other problems (planning, scheduling, circuit layout etc.)
Why?
 Commonly given: Solns. are densely distributed in the O(nn)
 space; on average a solution is a few steps away from a randomly picked
 assignment. But, solutions still exponentially rare!
In fact, density of solutions not very relevant. Even problems with a single

solution can be “easy” for local search!
It all depends on the structure of the search space and the guidance
 for the local moves provided by the optimization criterion.

For N-queens, consider h(n) = k, if k queens are attacked.
 Does this still give a valid solution? Does it work as well?

What happens if h(n) = 0 if no queen under attack; h(n) = 1 otherwise?
Does this still give a valid solution? Does it work as well? What does search do?

“Blind” search! No gradient in optimization criterion!

Bart Selman
CS4700 10

Issues for hill-climbing search

Problem: depending on initial state, can get stuck in local optimum
(here maximum)

How to overcome
local optima and plateaus ?

à Random-restart hill climbing

But, 1D figure is deceptive. True local optima are surprisingly rare in
high-dimensional spaces! There often is an escape to a better state.

Bart Selman
CS4700 11

Potential Issues with Hill Climbing / Greedy
Local Search

Local Optima: No neighbor is better, but not at global optimum.
–  May have to move away from goal to find (best) solution.
–  But again, true local optima are rare in many high-dimensional spaces.

Plateaus: All neighbors look the same.
–  8-puzzle: perhaps no action will change # of tiles out of place.
–  Soln. just keep moving around! (will often find some improving
 move eventually)

Ridges: sequence of local maxima

May not know global optimum: Am I done?

Bart Selman
CS4700 12

Improvements to Greedy /
Hill-climbing Search

Issue:
–  How to move more quickly to successively better plateaus?
–  Avoid “getting stuck” / local maxima?

Idea: Introduce “noise:”
 downhill (uphill) moves to escape from
 plateaus or local maxima (mimima)
 E.g., make a move that increases the number of attacking pairs.

Noise strategies:
1. Simulated Annealing

•  Kirkpatrick et al. 1982; Metropolis et al. 1953
2. Mixed Random Walk (Satisfiability)

•  Selman, Kautz, and Cohen 1993

Bart Selman
CS4700 13

Simulated Annealing

Idea:
Use conventional hill-climbing style techniques, but
occasionally take a step in a direction other than that in which
there is improvement (downhill moves; away from solution).

As time passes, the probability that a down-hill step is taken is
gradually reduced and the size of any down-hill step taken is
decreased.

Bart Selman
CS4700 14

Simulated annealing search
(one of the most widely used

optimization methods)

Idea: escape local maxima by allowing some "bad" moves but
 gradually decrease frequency of such moves.
 their frequency

case of improvement, make the move

Similar to hill climbing,
but a random move instead
of best move

Otherwise, choose the move with probability
that decreases exponentially with the
“badness” of the move.

What’s the probability when: T à inf?

What’s the probability when: T à 0?

What’s the probability when: Δ=0? (sideways / plateau move)
What’s the probability when: Δà-∞?

Bart Selman
CS4700 15

Notes
Noise model based on statistical mechanics

–  . . . introduced as analogue to physical process of growing crystals

Convergence:

1. With exponential schedule, will provably converge to global optimum
 One can prove: If T decreases slowly enough, then simulated annealing search

 will find a global optimum with probability approaching 1

2. Few more precise convergence rate.
 (Recent work on rapidly mixing Markov chains.
 Surprisingly deep foundations.)

Key aspect: downwards / sideways moves
–  Expensive, but (if have enough time) can be best

Hundreds of papers / year; original paper one of most cited papers in CS!
–  Many applications: VLSI layout, factory scheduling, protein folding. . .

Bart Selman
CS4700 16

Simulated Annealing (SA) --- Foundations

Superficially: SA is local search with some noise added. Noise starts high
and is slowly decreased.

True story is much more principled:

 SA is a general sampling strategy to sample from a combinatorial

space according to a well-defined probability distribution.

 Sampling strategy models the way physical systems, such as gases,

sample from their statistical equilibrium distributions. Order
10^23 particles. Studied in the field of statistical physics.

We will sketch the core idea.

Bart Selman
CS4700 17

000 001

010
011

101

111

100

110

Example: 3D Hypercube space

States Value f(s)
s1 000 2
s2 001 4.25
s3 010 4
s4 011 3
s5 100 2.5
s6 101 4.5
s7 110 3
s8 111 3.5

N dimensional “hypercube” space. N =3. 2^3 = 8 states total.

Goal: Optimize f(s), the value function. Maximum value 4.5 in s6.

Use local search: Each state / node has N = 3 neighbors (out of 2^N total).
“Hop around to find 101 quickly.”

Is there a local maximum?
Problem for greedy and hill climbing
but not for SA!

Bart Selman
CS4700 18

Of course, real interest in large N…

Spaces with 2^N states and each state with N neighbors.

7D hypercube; 128 states.
Every node, connected to 7 others.
Max distance between two nodes: 7.

9D hypercube; 512 states.
How many steps to go from any
state to any state?

Practical reasoning problem: N = 1,000,000. 2^N = 10^300,000

Bart Selman
CS4700 19

SA node sampling strategy

Consider the following “random walker” in hypercube space:

1) Start at a random node S (the “current node”).
 (How do we generate such a node?)

2) Select, at random, one of the N neighbors of S, call it S’

3)   If (f(S’) – f(S)) > 0, move to S’, i.e. set S := S’
 (i.e., jump to node with better value)
 else with probability e^(f(S’)-f(S))/T move to S’, i.e., set S := S’

4) Go back to 2)

Note: Walker keeps going and going. Does not get stuck in any one node.

Bart Selman
CS4700 20

Central Claim --- Equilibrium Distribution:

 After “a while,” we will find the walker in state S with probability

 Prob(S) = e^(f(S)/T) / Z

 where Z is a normalization constant (function of T) to make sure

the probabilities over all states add up to 1. I.e., we will be in a state
with a probability “proportional” to f(S) --- most likely in state
with highest f(S).

 Z is called the “partition function” and is given by

 Z = e^(f(x))/T

 where the sum is over all 2^N states x. So, an exponential sum!
 Very hard to compute but we generally don’t have to!

Bart Selman
CS4700 21

For our example space

States Value f(s)
s1 000 2
s2 001 4.25
s3 010 4
s4 011 3
s5 100 2.5
s6 101 4.5
s7 110 3
s8 111 3.5

Prob(s) = e^(f(s))/T / Z

So, at T = 1.0, walker will spend roughly 29% of its time in the best state.

T=1.0 Prob(s)
 7.4 0.02
 70.1 0.23
 54.6 0.18
 20.1 0.07
 12.2 0.04
 90.0 0.29

 20.1 0.07
 33.1 0.11
sum Z = 307.9

T=0.5 Prob(s)
 55 0.003
 4915 0.27
 2981 0.17
 403 0.02
 148 0.008
 8103 0.45
 403 0.02
 1097 0.06
sum Z = 18,105

 T=0.25 Prob(s)
 2981 0.000
 24,154,952 0.24
 8,886,111 0.09
 162,755 0.001
 22,026 0.008
65,659,969 0.65
 162,755 0.001
 1,202,604 0.06
sum Z = 100,254,153

T = 0.5, roughly 45% of its time in the best state.
T = 0.25, roughly 65% of its time in the best state.
 And, remaining time mostly in s2 (2nd best)!

Bart Selman
CS4700 22

So, when T gets lowered, the probability distribution starts to
 concentrate on the maximum (and close to maximum) value states.

The lower T, the stronger the effect!

What about T high? What is Z and Prob(S)?

At low T, we can just output the current state. It will quite likely be a
 maximum value (or close to it) state. In practice: Keep track of best
 state seen during the SA search.

SA is an example of so-called Markov Chain Monte Carlo
 or MCMC sampling.

It’s very general technique to sample from complex probability
 distributions by making local moves only. For optimization, we chose
 a clever probability distribution that concentrates on the optimum
 states for low T. (Kirkpatrick et al. 1984)

2^N and 1/(2^N)
because e^0 =1 in each row

Bart Selman
CS4700 23

Some final notes on SA:

1)   “Claim Equilibrium Distribution” needs proof. Not too difficult but

takes a bit of background about Markov Chains. It’s beautiful and
useful theory.

2)   How long should we run at each T? Technically, till the process
reaches the stationary distribution. Here’s the catch: may take
exponential time in the worst case. L

3)   How quickly should we “cool down”? Various schedules in literature.
4)   To get (near-)optimum, you generally can run much shorter than

needed for full stationary distribution.
5)   Keep track of best solution seen so far.
6)   A few formal convergence rate results exists, including some polytime

results (“rapidly mixing Markov chains”).
7)   Many variations on basic SA exist, useful for different applications.

Bart Selman
CS4700 24

What I didn’t tell you
Q. Why not just run at a low temperature right away?
SA is guaranteed to converge to the equilibrium distribution
Prob(s) = e^(f(s))/T / Z
However, this can take some time. “Burn-in time of Markov chain.”
Idea of annealing: can reach equilibrium distribution more
quickly by first starting at a higher T and going down slowly.

Practical example: T = 100, take 100,000 flips. Then, T = .9 * 100 = 90,
take 100,000 flips. Then, T = .9 * 90 = 81, take 100,000 flips. Etc.

Q. How can you sample properly from an exponential
space without the chain first visiting each state?

Best answered with an example. Consider N binary variables, and
starting from the all 0 state (“origin of hypercube”).
How many flips are needed to reach a purely random point
uniformly at random in the N dimensional hypercube?

Bart Selman
CS4700 25

Local beam search
•  Start with k randomly generated states

•  Keep track of k states rather than just one

•  At each iteration, all the successors of all k states are generated

•  If any one is a goal state, stop; else select the k best successors from

the complete list and repeat.

No: Different since information is shared between k search points:

Some search points may contribute none to best successors: one search
point may contribute all k successors “Come over here, the grass is
greener” (R&N)

Equivalent to k random-restart hill-climbing?

Bart Selman
CS4700 26

Genetic Algorithms

Bart Selman
CS4700 27

Genetic Algorithms

Another class of iterative improvement algorithms

–  A genetic algorithm maintains a population of candidate
solutions for the problem at hand, and makes it evolve by
iteratively applying a set of stochastic operators

Inspired by the biological evolution process
Uses concepts of “Natural Selection” and “Genetic

Inheritance” (Darwin 1859)
Originally developed by John Holland (1975)

Bart Selman
CS4700 28

High-level Algorithm

1.  Randomly generate an initial population
2.  Evaluate the fitness of members of population
3.  Select parents based on fitness, and “reproduce” to get

the next generation (using “crossover” and mutations)
4.  Replace the old generation with the new generation
5.  Repeat step 2 though 4 till iteration N

Bart Selman
CS4700 29

Stochastic Operators

Cross-over
–  decomposes two distinct solutions and then
–  randomly mixes their parts to form novel

solutions
Mutation

–  randomly perturbs a candidate solution

Bart Selman
CS4700 30

A successor state is generated by combining two parent states

Start with k randomly generated states (population)

A state is represented as a string over a finite alphabet
 (often a string of 0s and 1s)

Evaluation function (fitness function). Higher values for better states.

Produce the next generation of states by selection, crossover, and mutation

Bart Selman
CS4700 31

Genetic algorithms

production of next generation

Fitness function: number of non-attacking
pairs of queens (min = 0, max = 8 × 7/2 = 28
à the higher the better)

 24/(24+23+20+11) = 31%

 23/(24+23+20+11) = 29% etc

probability of a given pair selection
proportional to the fitness (b)

crossover point randomly generated

random mutation

Operate on state representation.

Bart Selman
CS4700 32

Genetic algorithms

Any reason pieces from different solutions
fit together?

Bart Selman
CS4700 33

Lots of variants of genetic algorithms with different selection, crossover,
and mutation rules.

GAs have a wide application in optimization – e.g., circuit layout and job

shop scheduling

Much work remains to be done to formally understand GAs and to

identify the conditions under which they perform well.

Bart Selman
CS4700 34

Demo of Genetic Programming (GP):
The Evolutionary Walker

Stick figure ---
Three nodes:
1 body
2 feet

Basic physics
model:
gravity
momentum etc.

Discrete time

Actions to control:
 1) angle
 2) push off ground for each foot.

Input for control program (from physics module):
Position and velocity for the three nodes.

Goal:
Make it
run as fast as
possible!
Evolve population
of control
programs.

Bart Selman
CS4700 35

Control language:

Example:

Basically, computes a real number
to set angle (or push strength) for
next time step.

Body and foot will each evolve their
own control program.

Bart Selman
CS4700 36

Population of control programs is maintained and evolved.

Fitness determined by measuring how far the walker gets in T time
units (T fixed).

Evolution through parent selection based on fitness.
Followed by
crossover (swap parts of control programs, i.e., arithmetic expression
 trees) and
mutations (randomly generate new parts of control program).

Bart Selman
CS4700 37

Can this work? How well?

Would it be hard to program directly? Think about it…

Demo

Bart Selman
CS4700 38

Leaner.txt --- most basic walker

(/(-(/(R -1.8554944551635097)(U(N 0)))(+(-(R 0.26696974973371823)(Y(N 1)))(-(-(X(N 0))(V(N 0)))
(U(N 0)))))(-(*(R 0.6906081172421406)(Y(N 0)))(-(V(N 1))(V(N 0)))))

(I(<(-(*(R -0.4749818581316987)(Y(N 1)))(-(V(N 2))(-(V(N 1))(V(N 1)))))(/(+(Y(N 1))(R

1.8836665782029058))(X(N 1))))(+(+(*(Y(N 2))(+(R 0.26073435346772067)(+(X(N 1))(X(N 1)))))(+
(X(N 1))(+(-(Y(N 2))(I(B false)(Y(N 1))(Y(N 2))))(V(N 1)))))(/(V(N 1))(X(N 1))))(-(I(<(U(N 1))(I(B

false)(I(B true)(X(N 1))(X(N 0)))(U(N 1))))(+(+(I(B false)(X(N 1))(Y(N 1)))(I(B false)(Y(N 0))(*(U(N
1))(U(N 2)))))(X(N 1)))(X(N 1)))(R 0.5940420353545179)))

(+(I(>(R 0.5794443410907397)(X(N 2)))(+(Y(N 0))(I(=(X(N 1))(R 0.8970017727908304))(I(>(X(N 2))
(U(N 2)))(+(R -1.7936388433304842)(X(N 2)))(R -1.5628590286537545))(+(R -0.8070029381426358)

(Y(N 0)))))(Y(N 2)))(-(-(I(B false)(X(N 2))(-(Y(N 2))(I(B true)(V(N 1))(Y(N 2)))))(I(=(X(N 2))(V(N 2)))
(Y(N 2))(U(N 2))))(I(<(-(X(N 2))(X(N 2)))(+(R 0.9121162135497185)(R -1.2851304610388143)))(X(N

2))(*(R 0.2968842304359933)(Y(N 2))))))

====================
Pop size: 50

Max gen: 100
Mutate prob: 0.0
Cross prob: 0.0

Bart Selman
CS4700 39

Sprinter7661.txt --- one of the fastest walkers

(-(-(-(U(N 0))(+(Y(N 0))(/(+(+(R 0.7499415628721899)(+(Y(N 0))(Y(N 0))))(X(N 0)))(*(R 0.20363512445479204)(-(U(N 2))(X(N
0)))))))(-(-(Y(N 0))(X(N 0)))(I(<(/(+(X(N 0))(Y(N 0)))(+(U(N 0))(Y(N 0))))(X(N 0)))(X(N 0))(Y(N 0)))))(-(-(U(N 0))(X(N 0)))

(*(-(-(Y(N 0))(R 0.90287443905547))(Y(N 0)))(I(B false)(R 1.6373642908344364)(*(V(N 0))(-(Y(N 0))(X(N 1))))))))

(+(I(=(X(N 0))(X(N 0)))(I(B true)(/(I(<(/(+(V(N 0))(X(N 1)))(Y(N 1)))(-(-(-(X(N 1))(Y(N 1)))(Y(N 0)))(+(V(N 1))(I(B true)(I(B false)
(V(N 1))(Y(N 1)))(Y(N 1))))))(X(N 0))(X(N 1)))(Y(N 1)))(R 1.7322667925012376))(X(N 1)))(+(I(=(X(N 0))(X(N 0)))(I(B true)

(I(=(X(N 0))(X(N 0)))(I(B true)(/(I(<(/(+(V(N 0))(X(N 1)))(Y(N 1)))(-(-(-(X(N 1))(Y(N 1)))(Y(N 0)))(+(V(N 1))(I(B true)(I(B
false)(V(N 1))(Y(N 1)))(Y(N 1))))))(+(X(N 0))(V(N 1)))(X(N 1)))(Y(N 1)))(R 1.7322667925012376))(X(N 1)))(R

1.7322667925012376))(X(N 1)))(-(+(Y(N 1))(-(I(>(X(N 2))(I(=(X(N 2))(X(N 1)))(X(N 1))(+(/(V(N 1))(X(N 1)))(*(Y(N 1))(R
-0.2527339900147063)))))(*(*(I(>(U(N 1))(I(B false)(V(N 1))(X(N 1))))(V(N 1))(*(R 0.5789447390820031)(V(N 1))))(Y(N

1)))(Y(N 1)))(U(N 2)))(I(B true)(X(N 1))(R -1.3674019962815391))))(I(B true)(X(N 1))(R -1.3674019962815391)))))

(I(<(-(R 1.0834795574638003)(/(V(N 2))(X(N 2))))(I(<(-(/(+(*(+(-(Y(N 0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B
true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R

0.586892403392552)(+(R -0.9444619621722184)(R -0.3539879557813772)))(Y(N 0)))))(X(N 1)))(X(N 1)))(U(N 2)))(/(V(N 2))
(X(N 0))))(X(N 2)))(*(+(-(Y(N 0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R

-0.7459046887493868))))(X(N 0)))(X(N 2))))(X(N 2)))(I(=(R 0.06513609737108705)(I(<(-(R 1.0834795574638003)(/(V(N 2))
(X(N 2))))(I(<(-(/(+(*(+(-(Y(N 0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R

-0.7459046887493868))))(X(N 0)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 0.586892403392552)(+(R
-0.9444619621722184)(R -0.3539879557813772)))(Y(N 0)))))(X(N 1)))(X(N 1)))(U(N 2)))(/(V(N 2))(X(N 0))))(X(N 2)))(*(+(-
(Y(N 0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))

(X(N 2))))(X(N 2)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(I(<(-(/(+(*(+(-(Y(N 0))(I(B false)(X(N 2))
(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R

0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 0.586892403392552)(+(R -0.9444619621722184)(R
-0.3539879557813772)))(Y(N 0)))))(X(N 1)))(X(N 1)))(U(N 2)))(/(V(N 2))(X(N 0))))(X(N 2)))(*(+(-(Y(N 0))(I(B false)(X(N

2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(X(N 2))))(X(N 2)))(I(=(R
0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(*(I(=(Y(N 1))(V(N 2)))(*(R -1.785981479518025)(-(Y(N 2))(/(-(/(Y(N
1))(V(N 2)))(-(V(N 2))(X(N 2))))(Y(N 2)))))(/(-(-(R 0.6169974948994237)(X(N 2)))(X(N 2)))(I(B false)(Y(N 2))(V(N 2)))))(-

(X(N 2))(I(=(Y(N 2))(-(Y(N 2))(U(N 2))))(X(N 2))(Y(N 2)))))(I(=(R

Bart Selman
CS4700 40

0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(*(I(=(Y(N 1))(V(N 2)))(*(R -1.785981479518025)(-(Y(N 2))(/(-(/(Y(N 1))
(V(N 2)))(-(V(N 2))(X(N 2))))(Y(N 2)))))(/(-(-(R 0.6169974948994237)(X(N 2)))(X(N 2)))(I(B false)(Y(N 2))(V(N 2)))))(-(X(N
2))(I(=(Y(N 2))(-(Y(N 2))(U(N 2))))(X(N 2))(Y(N 2)))))(X(N 2)))(V(N 2))))(X(N 0))))(I(=(R 0.06513609737108705)(/(U(N 2))

(Y(N 0))))(I(B false)(*(I(=(Y(N 1))(V(N 2)))(*(R -1.785981479518025)(-(Y(N 2))(/(-(/(Y(N 1))(V(N 2)))(-(V(N 2))(X(N 2))))
(Y(N 2)))))(/(-(-(R 0.6169974948994237)(X(N 2)))(X(N 2)))(I(B false)(Y(N 2))(V(N 2)))))(-(X(N 2))(I(=(Y(N 2))(-(Y(N 2))

(U(N 2))))(X(N 2))(Y(N 2)))))(X(N 2)))(V(N 2))))(X(N 0)))))(*(+(-(Y(N 0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))
(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B

false)(R 0.586892403392552)(+(R -0.9444619621722184)(R -0.3539879557813772)))(Y(N 0)))))(I(<(-(R
1.0834795574638003)(/(V(N 2))(X(N 2))))(I(<(-(/(+(*(+(-(Y(N 0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)

(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R
0.586892403392552)(+(R -0.9444619621722184)(R -0.3539879557813772)))(Y(N 0)))))(X(N 1)))(X(N 1)))(U(N 2)))(/(V(N 2))

(X(N 0))))(X(N 2)))(*(+(-(Y(N 0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R
-0.7459046887493868))))(X(N 0)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 0.586892403392552)(+(R

-0.9444619621722184)(R -0.3539879557813772)))(Y(N 0)))))(X(N 2)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B
false)(*(I(=(Y(N 1))(V(N 2)))(*(R -1.785981479518025)(-(Y(N 2))(/(-(/(Y(N 1))(V(N 2)))(-(V(N 2))(X(N 2))))(Y(N 2)))))(/(-(-
(R 0.6169974948994237)(X(N 2)))(X(N 2)))(I(B false)(Y(N 2))(V(N 2)))))(-(X(N 2))(I(=(Y(N 2))(-(Y(N 2))(U(N 2))))(X(N 2))

(Y(N 2)))))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(*(I(=(Y(N 1))(V(N 2)))(*(R -1.785981479518025)(-
(Y(N 2))(/(-(/(Y(N 1))(V(N 2)))(-(V(N 2))(X(N 2))))(Y(N 2)))))(/(-(-(R 0.6169974948994237)(X(N 2)))(X(N 2)))(I(B false)

(Y(N 2))(V(N 2)))))(-(X(N 2))(I(=(Y(N 2))(-(Y(N 2))(U(N 2))))(X(N 2))(Y(N 2)))))(X(N 2)))(V(N 2))))(X(N 0)))))(*(+(-(Y(N
0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R

0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 0.586892403392552)(+(R -0.9444619621722184)(R
-0.3539879557813772)))(Y(N 0)))))(X(N 1)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(*(I(=(Y(N 1))(V(N
2)))(*(R -1.785981479518025)(-(Y(N 2))(/(-(/(Y(N 1))(V(N 2)))(-(V(N 2))(X(N 2))))(Y(N 2)))))(/(-(-(R 0.6169974948994237)

(X(N 2)))(X(N 2)))(I(B false)(Y(N 2))(V(N 2)))))(-(X(N 2))(I(=(Y(N 2))(-(Y(N 2))(U(N 2))))(X(N 2))(Y(N 2)))))(X(N 2)))(X(N
2)))))(I(=(R 0.06513609737108705)(/(U(N 2))(*(+(-(Y(N 0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N

1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R
0.586892403392552)(+(R -0.9444619621722184)(R -0.3539879557813772)))(Y(N 0)))))(X(N 1)))))(I(B false)(X(N 1))(X(N

2)))(X(N 2)))))(I(B false)(I(<(-(/(+(*(+(-(Y(N 0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N
2))(R -0.7459046887493868))))(X(N 0)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 0.586892403392552)
(+(R -0.9444619621722184)(R -0.3539879557813772)))(Y(N 0)))))(X(N 1)))(X(N 1)))(U(N 2)))(/(V(N 2))(X(N 0))))(X(N 2)))

(*(+(-(Y(N 0))(I(B false)(X(N 2))(Y(N 1))))(I(B

Bart Selman
CS4700 41

true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(X(N 2))))(X(N 2)))(I(=(R 0.06513609737108705)
(/(U(N 2))(Y(N 0))))(I(B false)(*(I(=(Y(N 1))(V(N 2)))(*(R -1.785981479518025)(-(Y(N 2))(/(-(/(Y(N 1))(V(N 2)))(-(V(N 2))
(X(N 2))))(Y(N 2)))))(/(-(-(R 0.6169974948994237)(X(N 2)))(X(N 2)))(I(B false)(Y(N 2))(V(N 2)))))(-(X(N 2))(I(=(Y(N 2))(-
(Y(N 2))(U(N 2))))(X(N 2))(Y(N 2)))))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(*(I(=(Y(N 1))(V(N 2)))

(*(R -1.785981479518025)(-(Y(N 2))(/(-(/(Y(N 1))(V(N 2)))(-(V(N 2))(X(N 2))))(Y(N 2)))))(/(-(-(R 0.6169974948994237)(X(N
2)))(X(N 2)))(I(B false)(Y(N 2))(V(N 2)))))(-(X(N 2))(I(=(Y(N 2))(-(Y(N 2))(U(N 2))))(X(N 2))(Y(N 2)))))(X(N 2)))(V(N 2))))

(X(N 0))))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(*(I(=(Y(N 1))(V(N 2)))(*(R -1.785981479518025)(-
(Y(N 2))(/(-(/(Y(N 1))(V(N 2)))(-(V(N 2))(X(N 2))))(Y(N 2)))))(/(-(-(R 0.6169974948994237)(X(N 2)))(X(N 2)))(I(B false)

(Y(N 2))(V(N 2)))))(-(X(N 2))(I(=(Y(N 2))(-(Y(N 2))(U(N 2))))(X(N 2))(Y(N 2)))))(X(N 2)))(V(N 2))))(X(N 0)))))(*(+(-(Y(N
0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R

0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 0.586892403392552)(+(R -0.9444619621722184)(R
-0.3539879557813772)))(Y(N 0)))))(I(<(-(R 1.0834795574638003)(/(V(N 2))(X(N 2))))(I(<(-(/(+(*(+(-(Y(N 0))(I(B false)(X(N

2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R
0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 0.586892403392552)(+(R -0.9444619621722184)(R

-0.3539879557813772)))(Y(N 0)))))(X(N 1)))(X(N 1)))(U(N 2)))(/(V(N 2))(X(N 0))))(X(N 2)))(*(+(-(Y(N 0))(I(B false)(X(N
2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R

0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 0.586892403392552)(+(R -0.9444619621722184)(R
-0.3539879557813772)))(Y(N 0)))))(X(N 2)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(*(I(=(Y(N 1))(V(N
2)))(*(R -1.785981479518025)(-(Y(N 2))(/(-(/(Y(N 1))(V(N 2)))(-(V(N 2))(X(N 2))))(Y(N 2)))))(/(-(-(R 0.6169974948994237)

(X(N 2)))(X(N 2)))(I(B false)(Y(N 2))(V(N 2)))))(-(X(N 2))(I(=(Y(N 2))(-(Y(N 2))(U(N 2))))(X(N 2))(Y(N 2)))))(I(=(R
0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(*(I(=(Y(N 1))(V(N 2)))(*(R -1.785981479518025)(-(Y(N 2))(/(-(/(Y(N
1))(V(N 2)))(-(V(N 2))(X(N 2))))(Y(N 2)))))(/(-(-(R 0.6169974948994237)(X(N 2)))(X(N 2)))(I(B false)(Y(N 2))(V(N 2)))))(-

(X(N 2))(I(=(Y(N 2))(-(Y(N 2))(U(N 2))))(X(N 2))(Y(N 2)))))(X(N 2)))(V(N 2))))(X(N 0)))))(*(+(-(Y(N 0))(I(B false)(X(N 2))
(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R

0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 0.586892403392552)(+(R -0.9444619621722184)(R
-0.3539879557813772)))(Y(N 0)))))(X(N 1)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(*(X(N 2))(-(X(N 2))

(I(=(Y(N 2))(-(Y(N 2))(U(N 2))))(X(N 2))(Y(N 2)))))(X(N 2)))(X(N 2)))))(I(=(Y(N 0))(/(U(N 2))(*(+(-(Y(N 0))(I(B false)(X(N
2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R

0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 0.586892403392552)(+(R -0.9444619621722184)(R
-0.3539879557813772)))(Y(N 0)))))(X(N 1)))))(I(B false)(X(N 1))(X(N 2)))(I(B true)(-(X(N 2))(+(I(<(U(N 2))(-(X(N 2))(Y(N

2))))(-(I(=(Y(N 2))(/(Y(N 2))(-(I(B false)(X(N 2))(Y(N 2)))(R -0.2816474909118467))))(X(N 2))(X(N 0)))(+(V(N 2))(-(U(N 1))
(Y(N

Bart Selman
CS4700 42

2)))))(+(Y(N 2))(R -1.6972810613722311)))(-(Y(N 2))(+(X(N 2))(-(U(N 0))(-(Y(N 2))(U(N 2))))))))(I(=(/(Y(N 2))(/(Y(N 1))(+(I(B
false)(X(N 2))(X(N 2)))(+(Y(N 2))(I(>(V(N 2))(-(Y(N 0))(X(N 2))))(R 1.442859722538481)(X(N 1)))))))(-(R

-0.8609985653714518)(Y(N 1))))(V(N 2))(+(*(V(N 2))(Y(N 2)))(X(N 0)))))))

====================

Pop size: 100
Max gen: 50000

Mutate prob: 0.9
Cross prob: 0.9

Bart Selman
CS4700 43

Summary

Local search algorithms
–  Hill-climbing search
–  Local beam search
–  Simulated annealing search
–  Genetic algorithms (Genetic algorithms)
–  Tabu search (not covered)

Bart Selman
CS4700 44

1) Surprisingly efficient search technique
2) Often the only feasible approach
3) Wide range of applications
4) Formal properties / guarantees still difficult to obtain
5) Intuitive explanation:

–  Search spaces are too large for systematic search anyway. . .
6) Area will most likely continue to thrive

