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Local Search  

 
Readings R&N: Chapter 4:1 and 6:4 
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So far: 
     methods that systematically explore the search space, possibly 
     using principled pruning (e.g., A*) 
 
 
Current best such algorithm can handle search spaces of up to 10100  
     states / around 500 binary variables (“ballpark” number only!) 
 
What if we have much larger search spaces? 
 
    Search spaces for some real-world problems may  be much larger 
    e.g. 1030,000 states as in certain reasoning and planning tasks. 
  

A completely different kind of method is called for --- non-systematic: 
 
      Local search 
      (sometimes called: Iterative Improvement Methods) 
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Intro example: N-queens Problem: Place N queens on an NxN 
chess board so that no queen attacks 
another. 

Example solution for N = 8. 

How hard is it to find 
such solutions? What if N gets larger? 

Can be formulated as a search problem.  
Start with empty board. [Ops? How many?] 
Operators: place queen on location (i,j). [N^2. Goal?] 
Goal state: N queens on board. No-one attacks another. 

N=8, branching 64. Solution at what depth? 
N. Search: (N^2)^N Informed search? Ideas for a heuristic? 

Issues: (1) We don’t know much about 
the goal state. That’s what we are looking for! 
(2) Also, we don’t care about path to solution! 

What algorithm would you write to solve this? 

N-Queens demo! 
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Local  Search: General Principle 
Key idea (surprisingly simple): 
 
1) Select (random) initial state (initial guess at solution)  
                  e.g. guess random placement of N queens 

2) Make local modification to improve current state  
                  e.g. move queen under attack to “less attacked” square 
 
3) Repeat Step 2 until goal state found (or out of time)  
                   cycle can be done billions of times 

Requirements: 
–    generate an initial   
     (often random; probably-not-optimal or even valid) guess 
–    evaluate quality of guess  
–    move to other state (well-defined neighborhood function)  

  . . . and do these operations quickly 
 . . . and don't save paths followed 

 

Unsolvable if 
out of time? 

Not necessarily! 
Method is incomplete. 
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Local Search 

1)   Hill-climbing search or greedy local search 
2)   Simulated annealing 
3)   Local beam search 
4)   Genetic algorithms (related: genetic programming) 
5)   Tabu search (not covered) 
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Hill-climbing search 

“Like climbing Everest in thick fog with amnesia” 
  Keep trying to move to a better “neighbor”,  

                    using some quantity to optimize. 

Note: (1) “successor” normally called neighbor. 
           (2) minimization, isomorphic.  
           (3) stops when no improvement but often better to just 
                 “keep going”, especially if improvement = 0 
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4-Queens 
States:   4 queens in 4 columns (256 states)  
Neighborhood Operators:   move queen in column 
Evaluation / Optimization function:   h(n) = number of attacks / “conflicts”  
Goal test:   no attacks, i.e., h(G) = 0 
 
 

Local search: Because we only consider local changes to the state 
at each step. We generally make sure that series of local changes 
can reach all possible states. 

Initial state (guess). 
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8-Queens  
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Section 6.4 R&N (“hill-climbing with min-conflict heuristics”) 
Pick initial complete assignment (at random) 
Repeat 

•  Pick a conflicted variable var (at random) 
•  Set the new value of var to minimize the number of conflicts 
•  If the new assignment is not conflicting then return it 

(Min-conflicts heuristics) Inspired GSAT and Walksat 

Representation: 8 integer variables giving positions of 8 queens in columns 
(e.g. <2, 5, 7, 4, 3, 8, 6, 1>) 
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Remarks  Local search with min-conflict heuristic works extremely well for  
      N-queen problems. Can do millions and up in seconds. Similarly, 
      for many other problems (planning, scheduling, circuit layout etc.) 
Why?  
 Commonly given: Solns. are densely distributed in the O(nn) 
     space; on average a solution is a few steps away from a randomly picked 
     assignment. But, solutions still exponentially rare! 
In fact, density of solutions not very relevant. Even problems with a single 

solution can be “easy” for local search! 
It all depends on the structure of the search space and the guidance 
     for the local moves provided by the optimization criterion. 

For N-queens, consider h(n) = k, if k queens are attacked. 
       Does this still give a valid solution? Does it work as well? 

What happens if h(n) = 0 if no queen under attack; h(n) = 1 otherwise? 
Does this still give a valid solution? Does it work as well? What does search do? 

“Blind” search! No gradient in optimization criterion! 
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Issues for hill-climbing search 

Problem: depending on initial state, can get stuck in local optimum 
(here maximum) 

 
 

How to overcome  
local optima and  plateaus ? 

à Random-restart hill climbing   

But, 1D figure is deceptive. True local optima are surprisingly rare in 
high-dimensional spaces! There often is an escape to a better state. 
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Potential Issues with Hill Climbing / Greedy 
Local Search 

Local Optima: No neighbor is better, but not at global optimum.  
–  May have to move away from goal to find (best) solution. 
–  But again, true local optima are rare in many high-dimensional spaces. 
  

Plateaus: All neighbors look the same.  
–  8-puzzle: perhaps no action will change # of tiles out of place.  
–  Soln. just keep moving around! (will often find some improving 
     move eventually) 

Ridges:  sequence of local maxima 
 

 
May not know global optimum: Am I done?  
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Improvements to Greedy / 
Hill-climbing Search 

Issue:  
–  How to move more quickly to successively better plateaus?  
–  Avoid “getting stuck” / local maxima?  

Idea: Introduce “noise:” 
                    downhill (uphill) moves to escape from  
                    plateaus or local maxima (mimima) 
                    E.g., make a move that increases the number of attacking pairs. 
 

Noise strategies:  
1. Simulated Annealing   

•  Kirkpatrick et al. 1982; Metropolis et al. 1953  
2. Mixed Random Walk (Satisfiability) 

•  Selman, Kautz, and Cohen 1993 
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Simulated Annealing 

Idea: 
Use conventional hill-climbing style  techniques, but 
occasionally take a step in a direction other than that in which 
there is improvement (downhill moves; away from solution).  
 
As time passes, the probability that a down-hill step is taken is 
gradually reduced and the size of any down-hill step taken is 
decreased. 
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Simulated annealing search 
(one of the most widely used 

optimization methods) 

Idea: escape local maxima by allowing some "bad" moves but  
         gradually decrease frequency of such moves. 
         their frequency 
 
 

case of improvement, make the move 

Similar to hill climbing, 
but a random move instead 
of best move 

Otherwise, choose the move with probability 
that decreases exponentially with the 
“badness” of the move. 

What’s the probability when: T à inf? 

What’s the probability when: T à 0? 

What’s the probability when:  Δ=0? (sideways / plateau move) 
What’s the probability when:  Δà-∞? 
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Notes 
Noise model based on statistical mechanics  

–  . . . introduced as analogue to physical process of growing crystals  
 
Convergence:  

1. With exponential schedule, will provably converge to global optimum  
  One can prove: If T decreases slowly enough, then simulated annealing search 

 will find a global optimum with probability approaching 1 
 

2. Few more precise convergence rate. 
          (Recent work on rapidly mixing Markov chains. 
            Surprisingly deep foundations.)  
 

Key aspect: downwards / sideways moves  
–  Expensive, but (if have enough time) can be best  

Hundreds of papers / year; original paper one of most cited papers in CS! 
–  Many applications: VLSI layout, factory scheduling, protein folding. . .  
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Simulated Annealing (SA) --- Foundations 

Superficially: SA is local search with some noise added. Noise starts high 
and is slowly decreased. 

 
True story is much more principled: 
 
     SA is a general sampling strategy to sample from a combinatorial 

space according to a well-defined probability distribution. 
 
     Sampling strategy models the way physical systems, such as gases, 

sample from their statistical equilibrium distributions. Order 
10^23 particles. Studied in the field of statistical physics. 

 
We will sketch the core idea. 
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Example: 3D Hypercube space 

States              Value f(s) 
s1   000            2 
s2   001            4.25 
s3   010            4 
s4   011            3 
s5   100            2.5 
s6   101            4.5 
s7   110            3 
s8   111            3.5  
    

N dimensional “hypercube” space. N =3. 2^3 = 8 states total. 
 
Goal: Optimize f(s), the value function. Maximum value 4.5 in s6. 
 
Use local search: Each state / node has N = 3 neighbors (out of 2^N total). 
“Hop around to find 101 quickly.” 
 

Is there a local maximum? 
Problem for greedy and hill climbing 
but not for SA! 
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Of course, real interest in large N… 

Spaces with 2^N states and each state with N neighbors. 

7D hypercube; 128 states. 
Every node, connected to 7 others. 
Max distance between two nodes: 7. 

9D hypercube; 512 states. 
How many steps to go from any 
state to any state? 

Practical reasoning problem: N = 1,000,000. 2^N = 10^300,000 
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SA node sampling strategy 

Consider the following “random walker” in hypercube space: 
 

1)    Start at a random node S (the “current node”).    
       (How do we generate such a node?) 

2)    Select, at random, one of the N neighbors of S, call it S’ 

3)   If  (f(S’) – f(S)) > 0, move to S’, i.e. set S := S’  
       (i.e., jump to node with better value) 
       else with probability  e^(f(S’)-f(S))/T  move to S’, i.e., set S := S’ 
 
4)   Go back to 2) 
 

Note: Walker keeps going and going. Does not get stuck in any one node. 
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Central Claim --- Equilibrium Distribution: 
 
     After “a while,” we will find the walker in state S with probability 
 
     Prob(S) = e^(f(S)/T) / Z                        
 
     where Z is a normalization constant (function of T) to make sure 

the probabilities over all states add up to 1. I.e., we will be in a state 
with a probability “proportional” to f(S) --- most likely in state 
with highest f(S). 

     Z is called the “partition function” and is given by 
 
     Z  =        e^(f(x))/T     
 
     where the sum is over all 2^N states x.   So, an exponential sum! 
     Very hard to compute but we generally don’t have to! 
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For our example space 

States              Value f(s) 
s1   000            2                         
s2   001            4.25                  
s3   010            4 
s4   011            3 
s5   100            2.5                    
s6   101            4.5                    
s7   110            3                       
s8   111            3.5  
    
 

Prob(s) = e^(f(s))/T / Z 

So, at T = 1.0, walker will spend roughly 29% of its time in the best state. 

T=1.0      Prob(s) 
     7.4         0.02 
   70.1         0.23 
  54.6         0.18 
  20.1         0.07 
  12.2         0.04 
  90.0         0.29 

   20.1         0.07 
   33.1         0.11 
sum Z = 307.9 

T=0.5      Prob(s)   
      55         0.003 
  4915         0.27 
  2981         0.17 
    403         0.02 
    148         0.008 
  8103         0.45 
    403         0.02 
  1097         0.06 
sum Z = 18,105 

   T=0.25             Prob(s)   
           2981         0.000 
 24,154,952         0.24 
   8,886,111         0.09 
     162,755          0.001 
       22,026          0.008 
65,659,969          0.65 
     162,755          0.001 
  1,202,604          0.06 
sum Z = 100,254,153 

T = 0.5, roughly 45% of its time in the best state. 
T = 0.25, roughly 65% of its time in the best state.  
       And, remaining time mostly in s2 (2nd best)! 
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So, when T gets lowered, the probability distribution starts to  
       concentrate on the maximum (and close to maximum) value states. 
 
The lower T, the stronger the effect!  
 
What about T high? What is Z and Prob(S)? 
 
At low T, we can just output the current state. It will quite likely be a 
       maximum value (or close to it) state. In practice: Keep track of best 
       state seen during the SA search. 
 
SA is an example of so-called Markov Chain Monte Carlo 
      or MCMC sampling. 
 
It’s very general technique to sample from complex probability 
       distributions by making local moves only. For optimization, we chose 
       a clever probability distribution that concentrates on the optimum 
       states for low T. (Kirkpatrick et al. 1984) 

2^N and 1/(2^N)  
because e^0 =1 in each row 
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Some final notes on SA: 
 
1)   “Claim Equilibrium Distribution” needs proof. Not too difficult but 

takes a bit of background about Markov Chains. It’s beautiful and 
useful theory. 

2)   How long should we run at each T? Technically, till the process 
reaches the stationary distribution. Here’s the catch: may take 
exponential time in the worst case. L 

3)   How quickly should we “cool down”? Various schedules in literature. 
4)   To get (near-)optimum, you generally can run much shorter than 

needed for full stationary distribution. 
5)   Keep track of best solution seen so far. 
6)   A few formal convergence rate results exists, including some polytime 

results (“rapidly mixing Markov chains”). 
7)   Many variations on basic SA exist, useful for different applications. 
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What I didn’t tell you 
Q. Why not just run at a low temperature right away? 
SA is guaranteed to converge to the equilibrium distribution 
Prob(s) = e^(f(s))/T / Z 
However, this can take some time. “Burn-in time of Markov chain.” 
Idea of annealing: can reach equilibrium distribution more 
quickly by first starting at a higher T and going down slowly. 
 
Practical example: T = 100, take 100,000 flips. Then, T = .9 * 100 = 90, 
take 100,000 flips. Then, T = .9 * 90 = 81, take 100,000 flips. Etc. 
 
Q. How can you sample properly from an exponential 
space without the chain first visiting each state? 

Best answered with an example. Consider N binary variables, and  
starting from the all 0 state (“origin of hypercube”). 
How many flips are needed to reach a purely random point  
uniformly at random in the N dimensional hypercube? 
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Local beam search 
•  Start with k randomly generated states 
 
•  Keep track of k states rather than just one 
 
•  At each iteration, all the successors of all k states are generated 
 
•  If any one is a goal state, stop; else select the k best successors from 

the complete list and repeat. 
 

No: Different since information is shared between k search points: 
 

Some search points may contribute none to best successors: one search 
point may contribute all k successors “Come over here, the grass is 
greener” (R&N) 

Equivalent to k random-restart hill-climbing?  
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Genetic Algorithms 
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Genetic Algorithms 

Another  class of iterative improvement algorithms 
 

–  A genetic algorithm maintains a population of candidate 
solutions for the problem at hand, and makes it evolve by 
iteratively applying a set of stochastic operators 

Inspired by the biological evolution process 
Uses concepts of “Natural Selection” and “Genetic 

Inheritance” (Darwin 1859) 
Originally developed by John Holland (1975) 
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High-level  Algorithm 

1.  Randomly generate an initial population 
2.  Evaluate the fitness of members of population 
3.  Select parents based on fitness, and “reproduce” to get 

the next generation (using “crossover” and mutations) 
4.  Replace the old generation with the new generation 
5.  Repeat step 2 though 4 till iteration N 
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Stochastic Operators 

Cross-over 
–  decomposes two distinct solutions and then  
–  randomly mixes their parts to form novel 

solutions 
Mutation  

–  randomly perturbs a candidate solution 
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A successor state is generated by combining two parent states 
 
 
Start with k randomly generated states (population) 
 
 
A state is represented as a string over a finite alphabet 
    (often a string of 0s and 1s) 
 
Evaluation function (fitness function). Higher values for better states. 
 
 
Produce the next generation of states by selection, crossover, and mutation 
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Genetic algorithms 

 
 
 
 
 
 

production of next generation 

Fitness function: number of non-attacking 
pairs of queens (min = 0, max = 8 × 7/2 = 28  
à the higher the better)  
 

 24/(24+23+20+11) = 31% 
 

 23/(24+23+20+11) = 29% etc 
 

probability of a given pair selection 
proportional to the fitness (b) 

crossover point randomly generated 

random mutation 

Operate on state representation. 
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Genetic algorithms 

Any reason pieces from different solutions 
fit together? 
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Lots of variants of genetic algorithms with different selection, crossover, 
and mutation  rules. 

 
GAs have a wide application in optimization – e.g., circuit layout and job 

shop scheduling 
 
Much work remains to be done to formally understand GAs and to 

identify the conditions under which they perform well. 
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Demo of Genetic Programming (GP): 
The Evolutionary Walker 

Stick figure --- 
Three nodes: 
1 body 
2 feet 
 
Basic physics 
model: 
gravity 
momentum etc. 
 
Discrete time 

Actions to control:  
              1) angle 
              2) push off ground for each foot.  

Input for control program (from physics module): 
Position and velocity for the three nodes. 

Goal: 
Make it 
run as fast as  
possible! 
Evolve population 
of control  
programs. 



Bart Selman 
CS4700  35 

Control language: 

Example: 

Basically, computes a real number 
to set angle (or push strength) for 
next time step. 

Body and foot will each evolve their 
own control program. 
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Population of control programs is maintained and evolved. 
 
Fitness determined by measuring how far the walker gets in T time 
units (T fixed). 
 
Evolution through parent selection based on fitness.  
Followed by 
crossover (swap parts of control programs, i.e., arithmetic expression 
      trees) and  
mutations (randomly generate new parts of control program). 



Bart Selman 
CS4700  37 

Can this work? How well?  
 
Would it be hard to program directly? Think about it… 
 
 

Demo 
 



Bart Selman 
CS4700  38 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Leaner.txt   --- most basic walker 
  

(/(-(/(R -1.8554944551635097)(U(N 0)))(+(-(R 0.26696974973371823)(Y(N 1)))(-(-(X(N 0))(V(N 0)))
(U(N 0)))))(-(*(R 0.6906081172421406)(Y(N 0)))(-(V(N 1))(V(N 0))))) 

  
(I(<(-(*(R -0.4749818581316987)(Y(N 1)))(-(V(N 2))(-(V(N 1))(V(N 1)))))(/(+(Y(N 1))(R 

1.8836665782029058))(X(N 1))))(+(+(*(Y(N 2))(+(R 0.26073435346772067)(+(X(N 1))(X(N 1)))))(+
(X(N 1))(+(-(Y(N 2))(I(B false)(Y(N 1))(Y(N 2))))(V(N 1)))))(/(V(N 1))(X(N 1))))(-(I(<(U(N 1))(I(B 

false)(I(B true)(X(N 1))(X(N 0)))(U(N 1))))(+(+(I(B false)(X(N 1))(Y(N 1)))(I(B false)(Y(N 0))(*(U(N 
1))(U(N 2)))))(X(N 1)))(X(N 1)))(R 0.5940420353545179))) 

  
(+(I(>(R 0.5794443410907397)(X(N 2)))(+(Y(N 0))(I(=(X(N 1))(R 0.8970017727908304))(I(>(X(N 2))
(U(N 2)))(+(R -1.7936388433304842)(X(N 2)))(R -1.5628590286537545))(+(R -0.8070029381426358)

(Y(N 0)))))(Y(N 2)))(-(-(I(B false)(X(N 2))(-(Y(N 2))(I(B true)(V(N 1))(Y(N 2)))))(I(=(X(N 2))(V(N 2)))
(Y(N 2))(U(N 2))))(I(<(-(X(N 2))(X(N 2)))(+(R 0.9121162135497185)(R -1.2851304610388143)))(X(N 

2))(*(R 0.2968842304359933)(Y(N 2)))))) 
  

==================== 
Pop size:    50 

Max gen:     100 
Mutate prob: 0.0 
Cross prob:  0.0 
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Sprinter7661.txt  --- one of the fastest walkers 
  
  

(-(-(-(U(N 0))(+(Y(N 0))(/(+(+(R 0.7499415628721899)(+(Y(N 0))(Y(N 0))))(X(N 0)))(*(R 0.20363512445479204)(-(U(N 2))(X(N 
0)))))))(-(-(Y(N 0))(X(N 0)))(I(<(/(+(X(N 0))(Y(N 0)))(+(U(N 0))(Y(N 0))))(X(N 0)))(X(N 0))(Y(N 0)))))(-(-(U(N 0))(X(N 0)))

(*(-(-(Y(N 0))(R 0.90287443905547))(Y(N 0)))(I(B false)(R 1.6373642908344364)(*(V(N 0))(-(Y(N 0))(X(N 1)))))))) 
  

(+(I(=(X(N 0))(X(N 0)))(I(B true)(/(I(<(/(+(V(N 0))(X(N 1)))(Y(N 1)))(-(-(-(X(N 1))(Y(N 1)))(Y(N 0)))(+(V(N 1))(I(B true)(I(B false)
(V(N 1))(Y(N 1)))(Y(N 1))))))(X(N 0))(X(N 1)))(Y(N 1)))(R 1.7322667925012376))(X(N 1)))(+(I(=(X(N 0))(X(N 0)))(I(B true)

(I(=(X(N 0))(X(N 0)))(I(B true)(/(I(<(/(+(V(N 0))(X(N 1)))(Y(N 1)))(-(-(-(X(N 1))(Y(N 1)))(Y(N 0)))(+(V(N 1))(I(B true)(I(B 
false)(V(N 1))(Y(N 1)))(Y(N 1))))))(+(X(N 0))(V(N 1)))(X(N 1)))(Y(N 1)))(R 1.7322667925012376))(X(N 1)))(R 

1.7322667925012376))(X(N 1)))(-(+(Y(N 1))(-(I(>(X(N 2))(I(=(X(N 2))(X(N 1)))(X(N 1))(+(/(V(N 1))(X(N 1)))(*(Y(N 1))(R 
-0.2527339900147063)))))(*(*(I(>(U(N 1))(I(B false)(V(N 1))(X(N 1))))(V(N 1))(*(R 0.5789447390820031)(V(N 1))))(Y(N 

1)))(Y(N 1)))(U(N 2)))(I(B true)(X(N 1))(R -1.3674019962815391))))(I(B true)(X(N 1))(R -1.3674019962815391))))) 
  

(I(<(-(R 1.0834795574638003)(/(V(N 2))(X(N 2))))(I(<(-(/(+(*(+(-(Y(N 0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B 
true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 

0.586892403392552)(+(R -0.9444619621722184)(R -0.3539879557813772)))(Y(N 0)))))(X(N 1)))(X(N 1)))(U(N 2)))(/(V(N 2))
(X(N 0))))(X(N 2)))(*(+(-(Y(N 0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R 

-0.7459046887493868))))(X(N 0)))(X(N 2))))(X(N 2)))(I(=(R 0.06513609737108705)(I(<(-(R 1.0834795574638003)(/(V(N 2))
(X(N 2))))(I(<(-(/(+(*(+(-(Y(N 0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R 

-0.7459046887493868))))(X(N 0)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 0.586892403392552)(+(R 
-0.9444619621722184)(R -0.3539879557813772)))(Y(N 0)))))(X(N 1)))(X(N 1)))(U(N 2)))(/(V(N 2))(X(N 0))))(X(N 2)))(*(+(-
(Y(N 0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))

(X(N 2))))(X(N 2)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(I(<(-(/(+(*(+(-(Y(N 0))(I(B false)(X(N 2))
(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R 

0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 0.586892403392552)(+(R -0.9444619621722184)(R 
-0.3539879557813772)))(Y(N 0)))))(X(N 1)))(X(N 1)))(U(N 2)))(/(V(N 2))(X(N 0))))(X(N 2)))(*(+(-(Y(N 0))(I(B false)(X(N 

2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(X(N 2))))(X(N 2)))(I(=(R 
0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(*(I(=(Y(N 1))(V(N 2)))(*(R -1.785981479518025)(-(Y(N 2))(/(-(/(Y(N 
1))(V(N 2)))(-(V(N 2))(X(N 2))))(Y(N 2)))))(/(-(-(R 0.6169974948994237)(X(N 2)))(X(N 2)))(I(B false)(Y(N 2))(V(N 2)))))(-

(X(N 2))(I(=(Y(N 2))(-(Y(N 2))(U(N 2))))(X(N 2))(Y(N 2)))))(I(=(R  
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0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(*(I(=(Y(N 1))(V(N 2)))(*(R -1.785981479518025)(-(Y(N 2))(/(-(/(Y(N 1))
(V(N 2)))(-(V(N 2))(X(N 2))))(Y(N 2)))))(/(-(-(R 0.6169974948994237)(X(N 2)))(X(N 2)))(I(B false)(Y(N 2))(V(N 2)))))(-(X(N 
2))(I(=(Y(N 2))(-(Y(N 2))(U(N 2))))(X(N 2))(Y(N 2)))))(X(N 2)))(V(N 2))))(X(N 0))))(I(=(R 0.06513609737108705)(/(U(N 2))

(Y(N 0))))(I(B false)(*(I(=(Y(N 1))(V(N 2)))(*(R -1.785981479518025)(-(Y(N 2))(/(-(/(Y(N 1))(V(N 2)))(-(V(N 2))(X(N 2))))
(Y(N 2)))))(/(-(-(R 0.6169974948994237)(X(N 2)))(X(N 2)))(I(B false)(Y(N 2))(V(N 2)))))(-(X(N 2))(I(=(Y(N 2))(-(Y(N 2))

(U(N 2))))(X(N 2))(Y(N 2)))))(X(N 2)))(V(N 2))))(X(N 0)))))(*(+(-(Y(N 0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))
(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B 

false)(R 0.586892403392552)(+(R -0.9444619621722184)(R -0.3539879557813772)))(Y(N 0)))))(I(<(-(R 
1.0834795574638003)(/(V(N 2))(X(N 2))))(I(<(-(/(+(*(+(-(Y(N 0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)

(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 
0.586892403392552)(+(R -0.9444619621722184)(R -0.3539879557813772)))(Y(N 0)))))(X(N 1)))(X(N 1)))(U(N 2)))(/(V(N 2))

(X(N 0))))(X(N 2)))(*(+(-(Y(N 0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R 
-0.7459046887493868))))(X(N 0)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 0.586892403392552)(+(R 

-0.9444619621722184)(R -0.3539879557813772)))(Y(N 0)))))(X(N 2)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B 
false)(*(I(=(Y(N 1))(V(N 2)))(*(R -1.785981479518025)(-(Y(N 2))(/(-(/(Y(N 1))(V(N 2)))(-(V(N 2))(X(N 2))))(Y(N 2)))))(/(-(-
(R 0.6169974948994237)(X(N 2)))(X(N 2)))(I(B false)(Y(N 2))(V(N 2)))))(-(X(N 2))(I(=(Y(N 2))(-(Y(N 2))(U(N 2))))(X(N 2))

(Y(N 2)))))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(*(I(=(Y(N 1))(V(N 2)))(*(R -1.785981479518025)(-
(Y(N 2))(/(-(/(Y(N 1))(V(N 2)))(-(V(N 2))(X(N 2))))(Y(N 2)))))(/(-(-(R 0.6169974948994237)(X(N 2)))(X(N 2)))(I(B false)

(Y(N 2))(V(N 2)))))(-(X(N 2))(I(=(Y(N 2))(-(Y(N 2))(U(N 2))))(X(N 2))(Y(N 2)))))(X(N 2)))(V(N 2))))(X(N 0)))))(*(+(-(Y(N 
0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R 

0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 0.586892403392552)(+(R -0.9444619621722184)(R 
-0.3539879557813772)))(Y(N 0)))))(X(N 1)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(*(I(=(Y(N 1))(V(N 
2)))(*(R -1.785981479518025)(-(Y(N 2))(/(-(/(Y(N 1))(V(N 2)))(-(V(N 2))(X(N 2))))(Y(N 2)))))(/(-(-(R 0.6169974948994237)

(X(N 2)))(X(N 2)))(I(B false)(Y(N 2))(V(N 2)))))(-(X(N 2))(I(=(Y(N 2))(-(Y(N 2))(U(N 2))))(X(N 2))(Y(N 2)))))(X(N 2)))(X(N 
2)))))(I(=(R 0.06513609737108705)(/(U(N 2))(*(+(-(Y(N 0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 

1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 
0.586892403392552)(+(R -0.9444619621722184)(R -0.3539879557813772)))(Y(N 0)))))(X(N 1)))))(I(B false)(X(N 1))(X(N 

2)))(X(N 2)))))(I(B false)(I(<(-(/(+(*(+(-(Y(N 0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 
2))(R -0.7459046887493868))))(X(N 0)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 0.586892403392552)
(+(R -0.9444619621722184)(R -0.3539879557813772)))(Y(N 0)))))(X(N 1)))(X(N 1)))(U(N 2)))(/(V(N 2))(X(N 0))))(X(N 2)))

(*(+(-(Y(N 0))(I(B false)(X(N 2))(Y(N 1))))(I(B  
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true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(X(N 2))))(X(N 2)))(I(=(R 0.06513609737108705)
(/(U(N 2))(Y(N 0))))(I(B false)(*(I(=(Y(N 1))(V(N 2)))(*(R -1.785981479518025)(-(Y(N 2))(/(-(/(Y(N 1))(V(N 2)))(-(V(N 2))
(X(N 2))))(Y(N 2)))))(/(-(-(R 0.6169974948994237)(X(N 2)))(X(N 2)))(I(B false)(Y(N 2))(V(N 2)))))(-(X(N 2))(I(=(Y(N 2))(-
(Y(N 2))(U(N 2))))(X(N 2))(Y(N 2)))))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(*(I(=(Y(N 1))(V(N 2)))

(*(R -1.785981479518025)(-(Y(N 2))(/(-(/(Y(N 1))(V(N 2)))(-(V(N 2))(X(N 2))))(Y(N 2)))))(/(-(-(R 0.6169974948994237)(X(N 
2)))(X(N 2)))(I(B false)(Y(N 2))(V(N 2)))))(-(X(N 2))(I(=(Y(N 2))(-(Y(N 2))(U(N 2))))(X(N 2))(Y(N 2)))))(X(N 2)))(V(N 2))))

(X(N 0))))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(*(I(=(Y(N 1))(V(N 2)))(*(R -1.785981479518025)(-
(Y(N 2))(/(-(/(Y(N 1))(V(N 2)))(-(V(N 2))(X(N 2))))(Y(N 2)))))(/(-(-(R 0.6169974948994237)(X(N 2)))(X(N 2)))(I(B false)

(Y(N 2))(V(N 2)))))(-(X(N 2))(I(=(Y(N 2))(-(Y(N 2))(U(N 2))))(X(N 2))(Y(N 2)))))(X(N 2)))(V(N 2))))(X(N 0)))))(*(+(-(Y(N 
0))(I(B false)(X(N 2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R 

0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 0.586892403392552)(+(R -0.9444619621722184)(R 
-0.3539879557813772)))(Y(N 0)))))(I(<(-(R 1.0834795574638003)(/(V(N 2))(X(N 2))))(I(<(-(/(+(*(+(-(Y(N 0))(I(B false)(X(N 

2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R 
0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 0.586892403392552)(+(R -0.9444619621722184)(R 

-0.3539879557813772)))(Y(N 0)))))(X(N 1)))(X(N 1)))(U(N 2)))(/(V(N 2))(X(N 0))))(X(N 2)))(*(+(-(Y(N 0))(I(B false)(X(N 
2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R 

0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 0.586892403392552)(+(R -0.9444619621722184)(R 
-0.3539879557813772)))(Y(N 0)))))(X(N 2)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(*(I(=(Y(N 1))(V(N 
2)))(*(R -1.785981479518025)(-(Y(N 2))(/(-(/(Y(N 1))(V(N 2)))(-(V(N 2))(X(N 2))))(Y(N 2)))))(/(-(-(R 0.6169974948994237)

(X(N 2)))(X(N 2)))(I(B false)(Y(N 2))(V(N 2)))))(-(X(N 2))(I(=(Y(N 2))(-(Y(N 2))(U(N 2))))(X(N 2))(Y(N 2)))))(I(=(R 
0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(*(I(=(Y(N 1))(V(N 2)))(*(R -1.785981479518025)(-(Y(N 2))(/(-(/(Y(N 
1))(V(N 2)))(-(V(N 2))(X(N 2))))(Y(N 2)))))(/(-(-(R 0.6169974948994237)(X(N 2)))(X(N 2)))(I(B false)(Y(N 2))(V(N 2)))))(-

(X(N 2))(I(=(Y(N 2))(-(Y(N 2))(U(N 2))))(X(N 2))(Y(N 2)))))(X(N 2)))(V(N 2))))(X(N 0)))))(*(+(-(Y(N 0))(I(B false)(X(N 2))
(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R 

0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 0.586892403392552)(+(R -0.9444619621722184)(R 
-0.3539879557813772)))(Y(N 0)))))(X(N 1)))(I(=(R 0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(*(X(N 2))(-(X(N 2))

(I(=(Y(N 2))(-(Y(N 2))(U(N 2))))(X(N 2))(Y(N 2)))))(X(N 2)))(X(N 2)))))(I(=(Y(N 0))(/(U(N 2))(*(+(-(Y(N 0))(I(B false)(X(N 
2))(Y(N 1))))(I(B true)(*(/(X(N 0))(I(B true)(Y(N 1))(-(Y(N 2))(R -0.7459046887493868))))(X(N 0)))(I(=(R 

0.06513609737108705)(/(U(N 2))(Y(N 0))))(I(B false)(R 0.586892403392552)(+(R -0.9444619621722184)(R 
-0.3539879557813772)))(Y(N 0)))))(X(N 1)))))(I(B false)(X(N 1))(X(N 2)))(I(B true)(-(X(N 2))(+(I(<(U(N 2))(-(X(N 2))(Y(N 

2))))(-(I(=(Y(N 2))(/(Y(N 2))(-(I(B false)(X(N 2))(Y(N 2)))(R -0.2816474909118467))))(X(N 2))(X(N 0)))(+(V(N 2))(-(U(N 1))
(Y(N  
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2)))))(+(Y(N 2))(R -1.6972810613722311)))(-(Y(N 2))(+(X(N 2))(-(U(N 0))(-(Y(N 2))(U(N 2))))))))(I(=(/(Y(N 2))(/(Y(N 1))(+(I(B 
false)(X(N 2))(X(N 2)))(+(Y(N 2))(I(>(V(N 2))(-(Y(N 0))(X(N 2))))(R 1.442859722538481)(X(N 1)))))))(-(R 

-0.8609985653714518)(Y(N 1))))(V(N 2))(+(*(V(N 2))(Y(N 2)))(X(N 0))))))) 
  

==================== 

Pop size:    100 
Max gen:     50000 

Mutate prob: 0.9 
Cross prob:  0.9 
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Summary 

Local search algorithms 
–  Hill-climbing search 
–  Local beam search 
–  Simulated annealing search 
–  Genetic algorithms (Genetic algorithms) 
–  Tabu search (not covered) 
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1) Surprisingly efficient search technique 
2) Often the only feasible approach 
3) Wide range of applications 
4) Formal properties / guarantees still difficult to obtain  
5) Intuitive explanation:  

–  Search spaces are too large for systematic search anyway. . .  
6) Area will most likely continue to thrive 


