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Warning: Chapter 2 is somewhat high-level and 
abstract. Much of the technical framework of how 
intelligent agents are actually built is introduced later. 

Intelligent agent-view provides framework to integrate the 
many subareas of AI. 



Agents 

Definition: An agent perceives its environment via sensors and acts 
upon that environment through its actuators  

 
 



The agent view is really quite generic. 
 
p. 36 R&N: 
     In a sense, all areas of engineering can be seen as designing artifacts 

that interact with the world. AI operates at the end of the spectrum, 
where the artifacts use significant computational resources and the 
task and environment requires non-trivial decision making. 

 
But, the definition of “agents” does technically also include, e.g., 

calculators or cars, artifacts with very limited to no intelligence. (Self-
driving cars come closer to what we view as intelligent agents, because 
of non-trivial sensing and real-time decision making under 
uncertainty.) 

 
Next: definition of rational agents. Sufficiently complex rational agents 

can be viewed as “intelligent agents.” 



E.g., vacuum-cleaner world 

 
 
 
 
Percepts: location and contents, 

e.g., [A, Dirty] 
 
Actions: Left, Right, Suck, NoOp 
 

iRobot Corporation 

Founder Rodney Brooks (MIT) 

Agent / Robot 



Rational agents 
An agent should strive to "do the right thing", based on what: 

–  it can perceive and  
–  the actions it can perform.  

The right action is the one that will cause the agent to be most successful 
 
 Performance measure: An objective criterion (“utility function”) for success of 
an agent's behavior. 
 
Performance measures of a vacuum-cleaner agent: amount of dirt cleaned up, 
amount of time taken, amount of electricity consumed, level of noise 
generated, etc. 
 
Performance measures self-driving car: time to reach destination (minimize), 
safety, predictability of behavior for other agents, reliability, etc. 
 
Performance measure of game-playing agent: win/loss percentage (maximize), 
robustness, unpredictability (to “confuse” opponent), etc. 
 



Definition of Rational Agent:  
 
For each possible percept sequence, a rational agent should select 
an action that maximizes its performance measure (in expectation) 
given the evidence provided by the percept sequence and whatever built- 
in knowledge the agent has. 

Why “in expectation”? 

Captures actions with stochastic / uncertain effects or 
actions performed in stochastic environments. 
We can then look at the expected value of an action. 

In high-risk settings, we may also want to limit the 
worst-case behavior. 



Rational agents 

Notes: 
 
Rationality is distinct from omniscience (“all knowing”). We can 
behave rationally even when faced with incomplete information. 
 
Agents can perform actions in order to modify future percepts so as 
to obtain useful information: information gathering, exploration. 
 
An agent is autonomous if its behavior is determined by its own 
experience (with ability to learn and adapt). 
 
 



Characterizing a Task Environment 
 

Must first specify the setting for intelligent agent design. 
 
PEAS: Performance measure, Environment, Actuators, Sensors 
 
Example:  the task of designing a self-driving car 
 

–  Performance measure   Safe, fast, legal, comfortable trip 
–  Environment   Roads, other traffic, pedestrians 

–  Actuators   Steering wheel, accelerator, brake, signal, horn 
–  Sensors   Cameras (but use limited), LIDAR (light/radar), speedometer, GPS,  
                           odometer, engine sensors, keyboard 

 



Task Environments 

1) Fully observable / Partially observable  
–  If an agent’s sensors give it access to the  
    complete state of the environment needed  
    to choose an action, the environment is  
    fully observable.  
    (e.g. chess – what about Kriegspiel?) 
 



Making things a bit more challenging… 
Kriegspiel --- you can’t see your opponent! 

Incomplete / 
uncertain 
information 
inherent in 
the game. 
 
Balance 
exploitation (best 
move given current 
knowledge) 
and exploration 
(moves to explore 
where opponent’s 
pieces might be). 
 
Use probabilistic 
reasoning 
techniques. 
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2) Deterministic / Stochastic  

•  An environment is deterministic if the next state of the environment is 
completely determined by the current state of the environment and the 
action of the agent;  

•  In a stochastic environment, there are multiple, unpredictable outcomes. 
(If the environment is deterministic except for the actions of other 
agents, then the environment is strategic). 

In a fully observable, deterministic environment, the agent need not deal 
with uncertainty.  

 
Note: Uncertainty can also arise because of computational limitations. 

E.g., we  may be playing an omniscient (“all knowing”) opponent but we 
may not be able to compute his/her moves. 

 
In fact, when considering reinforcement learning of games, even when 
game is deterministic (e.g. chess), a useful approach is to consider the 
opponent’s move as part of the (only partially known) environment. Can 
introduce non-determinism. So, your next state is after your move  
opponent’s move. 
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3) Episodic / Sequential 
 

–  In an episodic environment, the agent’s experience is divided into atomic 
     episodes. Each episode consists of the agent perceiving and then performing 
     a single action. 
 
–  Subsequent episodes do not depend on what actions occurred in previous 
     episodes. Choice of action in each episode depends only on the episode itself. 
     (E.g., classifying images.) 
     
–  In a sequential environment, the agent engages in a series of connected  
     episodes. Current decision can affect future decisions. (E.g., chess  and driving) 
 

4) Static / Dynamic 
  

–  A static environment does not change while the agent is thinking. 
 
–  The passage of time as an agent deliberates is irrelevant. 

–  The environment is semidynamic if the environment itself does not change 
      with the passage of time but the agent's performance score does. 

 



5) Discrete / Continuous 
–  If the number of distinct percepts and actions is limited, the 

environment is discrete, otherwise it is continuous. 
  

6) Single agent / Multi-agent  
–  If the environment contains other intelligent agents, the agent needs 

to be concerned about strategic, game-theoretic aspects of the 
environment (for either cooperative or competitive agents). 

–  Most engineering environments don’t have multi-agent properties, 
whereas most social and economic systems get their complexity from 
the interactions of (more or less) rational agents. 

 



Example Tasks and Environment Types 

How to make the right decisions? Decision theory 
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Agents and environments 

The agent function maps from percept histories to actions 
 

f: P* à A 
 
The agent program runs (internally) on the physical architecture to produce f 
 
agent = architecture + program 
 

Design an agent program assuming an architecture that will make the percepts from  
the sensors available to the program.  

our focus 



Types of Agents 



  

Uses a percept sequence / action table in memory to  
find the next action. Implemented as a (large) lookup table.  

Drawbacks: 
–  Huge table (often simply too large) 
–  Takes a long time to build/learn the table 

I) --- Table-lookup driven agents 



Percepts: robot senses it’s location and “cleanliness.” 
        So, location and contents, e.g., [A, Dirty], [B, Clean]. 
        With 2 locations, we get 4 different possible sensor inputs. 
Actions:  Left, Right, Suck, NoOp 
 

Toy example: 
Vacuum world. 

[Perceptual input sequence] 



Table lookup 
Action sequence of length K, gives 4^K different possible sequences. 
At least many entries are needed in the table. So, even in this very toy  
world, with K = 20, you need a table with over 4^20 > 10^12 entries. 
 
In more real-world scenarios, one would have many more different 
percepts (eg many more locations), e.g., >=100. There will therefore be 
100^K different possible sequences of length K. For K = 20, this would 
require a table with over 100^20 = 10^40 entries. Infeasible to even store. 
 
So, table lookup formulation is mainly of theoretical interest. For practical 
agent systems, we need to find much more compact representations. For 
example, logic-based representations, Bayesian net representations, 
or neural net style representations, or use a different agent architecture, 
e.g., “ignore the past” --- Reflex agents. 



II) --- Simple reflex agents  

Agents do not have memory of past world states or percepts.  
    So, actions depend solely on current percept. 
    Action becomes a “reflex.” 
 
Uses condition-action rules. 



Agent selects actions on the basis 
of current percept only. 

If tail-light of car in front is red, 
then brake. 



Simple reflex agents  

Closely related to “behaviorism” (psychology; quite 
effective in explaining lower-level animal behaviors, such 
as the behavior of ants and mice).  
The Roomba robot largely behaves like this. Behaviors are robust and 
can be quite effective and surprisingly complex. 
 

But, how does complex behavior arise from simple reflex behavior? 
E.g. ants colonies and bee hives are quite complex. 

A.  Simple rules in a diverse environment can  
give rise to surprising complexity. 

See A-life work (artificial life) community,  
and Wolfram’s cellular automata. 



III) --- Model-based reflex agents 

Key difference (wrt simple reflex agents):  
 

–  Agents  have  internal state, which is used to keep track of past 
states of the world. 

 
–  Agents have the ability to represent change in the World. 

Example: Rodney Brooks’ Subsumption Architecture  
               --- behavior based robots. 



Model-based reflex agents 

If “dangerous driver in front,” 
then “keep distance.” 

Module: 
 Logical Agents 

Representation and Reasoning: 
Part III/IV R&N  

  

“Infers potentially 
dangerous driver 
in front.” 

How detailed? 



  An example:  
Brooks’ Subsumption Architecture 

Main idea: build complex, intelligent robots by decomposing behaviors 
into a hierarchy of skills, each defining a percept-action cycle for one 
very specific task.  

 
Examples: collision avoidance, wandering, exploring, recognizing 

doorways, etc.  
 
Each behavior is modeled by a finite-state machine with a few states 

(though each state may correspond to a complex function or module; 
      provides internal state to the agent). 
  
Behaviors are loosely coupled via asynchronous interactions.  
 
Note: minimal internal state representation. 
p. 1003 R&N 
 



Subsumption Architecture, cont. 

In subsumption architecture, increasingly complex 
behaviors arise from the combination of simple 
behaviors.  
 
The most basic simple behaviors are on the level of 
reflexes: • avoid an object;  • go toward food if hungry 
• move randomly. 
 
A more complex  behavior that sits on top of simple 
behaviors  may be “go across the room.”  
 
The more complex behaviors subsume the less 
complex ones to accomplish their goal.  
 



  How much of an internal model of the world? 
Planning in and reasoning about our surroundings appears to require 
some kind of internal representation of our world. We can “try” things 
out in this representation. Much like an running a “simulation” of the 
effect of actions or a sequence of actions in our head. 
 
General assumption for many years:  
        The more detailed internal model, the better. 
 
Brooks (mid 80s and 90s) challenged this view: 
The philosophy behind Subsumption Architecture is that the world should 

be used as its own model. According to Brooks, storing models of the 
world is dangerous in dynamic, unpredictable environments because 
representations might be incorrect or outdated. What is needed is the 
ability to react quickly to the present. So, use minimal internal state 
representation, complement at each time step with sensor input. 

Debate continues to this day: How much of our world do we (should we) 
represent explicitly? Subsumption architecture worked well in robotics. 



  IV) --- Goal-based agents 

Key difference wrt Model-Based Agents: 
 
      In addition to state information, have goal information that  
      describes desirable situations to be achieved. 
 
 Agents of this kind take future events into consideration.  
What sequence of actions can I take to achieve certain goals? 
 
Choose actions so as to (eventually) achieve a (given or computed) goal. 
 
à  problem solving and search! (R&N --- Part II, chapters 3 to 6) 



Goal-based agents 

 
 

“Clean kitchen” 

Agent keeps track of the world state as well as set of goals it’s trying to achieve: chooses 
actions that will (eventually) lead to the goal(s). 

 More flexible than reflex agents à may involve search and planning 
 

Considers “future” 

Module: 
Problem Solving   



V) --- Utility-based agents 

When there are multiple possible alternatives, how to decide which one is best?   
 
Goals are qualitative: A goal specifies a crude distinction between a “happy/

win” and “unhappy/loss” state, but often need a more general performance 
measure that describes “degree of happiness.” 

 
Utility function U: State → R  indicating a measure of success or happiness 

when at a given state. 
 
Important for making tradeoffs: Allows decisions comparing choice between 

conflicting goals, and choice between likelihood of success and importance 
of goal (if achievement is uncertain). 

Use decision theoretic models: e.g., faster vs. safer.  



Utility-based agents 

Decision theoretic actions: 
e.g. faster vs. safer 



VI) --- Learning agents 
Adapt and improve over time 

Takes percepts 
and selects actions 

“Quick turn is not safe” 

Try out the brakes on 
 different road surfaces 

No quick turn  
 

Road conditions, etc 

More complicated when agent needs to learn 
utility information: Reinforcement learning  

(based on action payoff) 

Module: 
 Learning  



Summary: agent types 
(1) Table-driven agents  

–  use a percept sequence/action table in memory to find the next action. They 
are implemented by a (large) lookup table.  

(2) Simple reflex agents  
–  are based on condition-action rules, implemented with an appropriate 

production system. They are stateless devices which do not have memory of 
past world states.  

(3) Agents with memory - Model-based reflex agents 
–  have internal state, which is used to keep track of past states of the world.  

(4) Agents with goals – Goal-based agents 
–  are agents that, in addition to state information, have goal information that 

describes desirable situations. Agents of this kind take future events into 
consideration.  

(5) Utility-based agents  
–  base their decisions on classic axiomatic utility theory in order to act 

rationally.  
(6) Learning  agents  

–  they have the ability to improve performance through learning. 



An agent perceives and acts in an environment, has an architecture, and is implemented 
by an agent program.  

A rational agent always chooses the action which maximizes its expected performance, 
given its percept sequence so far. 

An autonomous agent uses its own experience rather than built-in knowledge of the 
environment by the designer.  

An agent program maps from percept to action and updates its internal state.  
–  Reflex agents (simple / model-based) respond immediately to percepts.  
–  Goal-based agents act in order to achieve their goal(s), possible sequence of steps.  
–  Utility-based agents maximize their own utility function.  
–  Learning agents improve their performance through learning. 

Representing knowledge is important for successful agent design. 
  
The most challenging environments are partially observable, stochastic, sequential, 

dynamic, and continuous, and contain multiple intelligent agents. 
 

Reading: Chapter 2 R&N 


