
CS 4700:
Foundations of Artificial Intelligence

 Bart Selman

Structure of intelligent agents and environments

R&N: Chapter 2

Outline

Characterization of agents and environments
 Rationality
 PEAS (Performance measure, Environment, Actuators, Sensors)

Environment types

Agent types

Warning: Chapter 2 is somewhat high-level and
abstract. Much of the technical framework of how
intelligent agents are actually built is introduced later.

Intelligent agent-view provides framework to integrate the
many subareas of AI.

Agents

Definition: An agent perceives its environment via sensors and acts
upon that environment through its actuators

The agent view is really quite generic.

p. 36 R&N:
 In a sense, all areas of engineering can be seen as designing artifacts

that interact with the world. AI operates at the end of the spectrum,
where the artifacts use significant computational resources and the
task and environment requires non-trivial decision making.

But, the definition of “agents” does technically also include, e.g.,

calculators or cars, artifacts with very limited to no intelligence. (Self-
driving cars come closer to what we view as intelligent agents, because
of non-trivial sensing and real-time decision making under
uncertainty.)

Next: definition of rational agents. Sufficiently complex rational agents

can be viewed as “intelligent agents.”

E.g., vacuum-cleaner world

Percepts: location and contents,

e.g., [A, Dirty]

Actions: Left, Right, Suck, NoOp

iRobot Corporation

Founder Rodney Brooks (MIT)

Agent / Robot

Rational agents
An agent should strive to "do the right thing", based on what:

–  it can perceive and
–  the actions it can perform.

The right action is the one that will cause the agent to be most successful

 Performance measure: An objective criterion (“utility function”) for success of
an agent's behavior.

Performance measures of a vacuum-cleaner agent: amount of dirt cleaned up,
amount of time taken, amount of electricity consumed, level of noise
generated, etc.

Performance measures self-driving car: time to reach destination (minimize),
safety, predictability of behavior for other agents, reliability, etc.

Performance measure of game-playing agent: win/loss percentage (maximize),
robustness, unpredictability (to “confuse” opponent), etc.

Definition of Rational Agent:

For each possible percept sequence, a rational agent should select
an action that maximizes its performance measure (in expectation)
given the evidence provided by the percept sequence and whatever built-
in knowledge the agent has.

Why “in expectation”?

Captures actions with stochastic / uncertain effects or
actions performed in stochastic environments.
We can then look at the expected value of an action.

In high-risk settings, we may also want to limit the
worst-case behavior.

Rational agents

Notes:

Rationality is distinct from omniscience (“all knowing”). We can
behave rationally even when faced with incomplete information.

Agents can perform actions in order to modify future percepts so as
to obtain useful information: information gathering, exploration.

An agent is autonomous if its behavior is determined by its own
experience (with ability to learn and adapt).

Characterizing a Task Environment

Must first specify the setting for intelligent agent design.

PEAS: Performance measure, Environment, Actuators, Sensors

Example: the task of designing a self-driving car

–  Performance measure Safe, fast, legal, comfortable trip
–  Environment Roads, other traffic, pedestrians

–  Actuators Steering wheel, accelerator, brake, signal, horn
–  Sensors Cameras (but use limited), LIDAR (light/radar), speedometer, GPS,
 odometer, engine sensors, keyboard

Task Environments

1) Fully observable / Partially observable
–  If an agent’s sensors give it access to the
 complete state of the environment needed
 to choose an action, the environment is
 fully observable.
 (e.g. chess – what about Kriegspiel?)

Making things a bit more challenging…
Kriegspiel --- you can’t see your opponent!

Incomplete /
uncertain
information
inherent in
the game.

Balance
exploitation (best
move given current
knowledge)
and exploration
(moves to explore
where opponent’s
pieces might be).

Use probabilistic
reasoning
techniques.

11

2) Deterministic / Stochastic

•  An environment is deterministic if the next state of the environment is
completely determined by the current state of the environment and the
action of the agent;

•  In a stochastic environment, there are multiple, unpredictable outcomes.
(If the environment is deterministic except for the actions of other
agents, then the environment is strategic).

In a fully observable, deterministic environment, the agent need not deal
with uncertainty.

Note: Uncertainty can also arise because of computational limitations.

E.g., we may be playing an omniscient (“all knowing”) opponent but we
may not be able to compute his/her moves.

In fact, when considering reinforcement learning of games, even when
game is deterministic (e.g. chess), a useful approach is to consider the
opponent’s move as part of the (only partially known) environment. Can
introduce non-determinism. So, your next state is after your move
opponent’s move.

12

3) Episodic / Sequential

–  In an episodic environment, the agent’s experience is divided into atomic
 episodes. Each episode consists of the agent perceiving and then performing
 a single action.

–  Subsequent episodes do not depend on what actions occurred in previous
 episodes. Choice of action in each episode depends only on the episode itself.
 (E.g., classifying images.)

–  In a sequential environment, the agent engages in a series of connected
 episodes. Current decision can affect future decisions. (E.g., chess and driving)

4) Static / Dynamic

–  A static environment does not change while the agent is thinking.

–  The passage of time as an agent deliberates is irrelevant.

–  The environment is semidynamic if the environment itself does not change
 with the passage of time but the agent's performance score does.

5) Discrete / Continuous
–  If the number of distinct percepts and actions is limited, the

environment is discrete, otherwise it is continuous.

6) Single agent / Multi-agent
–  If the environment contains other intelligent agents, the agent needs

to be concerned about strategic, game-theoretic aspects of the
environment (for either cooperative or competitive agents).

–  Most engineering environments don’t have multi-agent properties,
whereas most social and economic systems get their complexity from
the interactions of (more or less) rational agents.

Example Tasks and Environment Types

How to make the right decisions? Decision theory
15

Agents and environments

The agent function maps from percept histories to actions

f: P* à A

The agent program runs (internally) on the physical architecture to produce f

agent = architecture + program

Design an agent program assuming an architecture that will make the percepts from
the sensors available to the program.

our focus

Types of Agents

Uses a percept sequence / action table in memory to
find the next action. Implemented as a (large) lookup table.

Drawbacks:
–  Huge table (often simply too large)
–  Takes a long time to build/learn the table

I) --- Table-lookup driven agents

Percepts: robot senses it’s location and “cleanliness.”
 So, location and contents, e.g., [A, Dirty], [B, Clean].
 With 2 locations, we get 4 different possible sensor inputs.
Actions: Left, Right, Suck, NoOp

Toy example:
Vacuum world.

[Perceptual input sequence]

Table lookup
Action sequence of length K, gives 4^K different possible sequences.
At least many entries are needed in the table. So, even in this very toy
world, with K = 20, you need a table with over 4^20 > 10^12 entries.

In more real-world scenarios, one would have many more different
percepts (eg many more locations), e.g., >=100. There will therefore be
100^K different possible sequences of length K. For K = 20, this would
require a table with over 100^20 = 10^40 entries. Infeasible to even store.

So, table lookup formulation is mainly of theoretical interest. For practical
agent systems, we need to find much more compact representations. For
example, logic-based representations, Bayesian net representations,
or neural net style representations, or use a different agent architecture,
e.g., “ignore the past” --- Reflex agents.

II) --- Simple reflex agents

Agents do not have memory of past world states or percepts.
 So, actions depend solely on current percept.
 Action becomes a “reflex.”

Uses condition-action rules.

Agent selects actions on the basis
of current percept only.

If tail-light of car in front is red,
then brake.

Simple reflex agents

Closely related to “behaviorism” (psychology; quite
effective in explaining lower-level animal behaviors, such
as the behavior of ants and mice).
The Roomba robot largely behaves like this. Behaviors are robust and
can be quite effective and surprisingly complex.

But, how does complex behavior arise from simple reflex behavior?
E.g. ants colonies and bee hives are quite complex.

A.  Simple rules in a diverse environment can
give rise to surprising complexity.

See A-life work (artificial life) community,
and Wolfram’s cellular automata.

III) --- Model-based reflex agents

Key difference (wrt simple reflex agents):

–  Agents have internal state, which is used to keep track of past
states of the world.

–  Agents have the ability to represent change in the World.

Example: Rodney Brooks’ Subsumption Architecture
 --- behavior based robots.

Model-based reflex agents

If “dangerous driver in front,”
then “keep distance.”

Module:
 Logical Agents

Representation and Reasoning:
Part III/IV R&N

“Infers potentially
dangerous driver
in front.”

How detailed?

 An example:
Brooks’ Subsumption Architecture

Main idea: build complex, intelligent robots by decomposing behaviors
into a hierarchy of skills, each defining a percept-action cycle for one
very specific task.

Examples: collision avoidance, wandering, exploring, recognizing

doorways, etc.

Each behavior is modeled by a finite-state machine with a few states

(though each state may correspond to a complex function or module;
 provides internal state to the agent).

Behaviors are loosely coupled via asynchronous interactions.

Note: minimal internal state representation.
p. 1003 R&N

Subsumption Architecture, cont.

In subsumption architecture, increasingly complex
behaviors arise from the combination of simple
behaviors.

The most basic simple behaviors are on the level of
reflexes: • avoid an object; • go toward food if hungry
• move randomly.

A more complex behavior that sits on top of simple
behaviors may be “go across the room.”

The more complex behaviors subsume the less
complex ones to accomplish their goal.

 How much of an internal model of the world?
Planning in and reasoning about our surroundings appears to require
some kind of internal representation of our world. We can “try” things
out in this representation. Much like an running a “simulation” of the
effect of actions or a sequence of actions in our head.

General assumption for many years:
 The more detailed internal model, the better.

Brooks (mid 80s and 90s) challenged this view:
The philosophy behind Subsumption Architecture is that the world should

be used as its own model. According to Brooks, storing models of the
world is dangerous in dynamic, unpredictable environments because
representations might be incorrect or outdated. What is needed is the
ability to react quickly to the present. So, use minimal internal state
representation, complement at each time step with sensor input.

Debate continues to this day: How much of our world do we (should we)
represent explicitly? Subsumption architecture worked well in robotics.

 IV) --- Goal-based agents

Key difference wrt Model-Based Agents:

 In addition to state information, have goal information that
 describes desirable situations to be achieved.

 Agents of this kind take future events into consideration.
What sequence of actions can I take to achieve certain goals?

Choose actions so as to (eventually) achieve a (given or computed) goal.

à problem solving and search! (R&N --- Part II, chapters 3 to 6)

Goal-based agents

“Clean kitchen”

Agent keeps track of the world state as well as set of goals it’s trying to achieve: chooses
actions that will (eventually) lead to the goal(s).

 More flexible than reflex agents à may involve search and planning

Considers “future”

Module:
Problem Solving

V) --- Utility-based agents

When there are multiple possible alternatives, how to decide which one is best?

Goals are qualitative: A goal specifies a crude distinction between a “happy/

win” and “unhappy/loss” state, but often need a more general performance
measure that describes “degree of happiness.”

Utility function U: State → R indicating a measure of success or happiness

when at a given state.

Important for making tradeoffs: Allows decisions comparing choice between

conflicting goals, and choice between likelihood of success and importance
of goal (if achievement is uncertain).

Use decision theoretic models: e.g., faster vs. safer.

Utility-based agents

Decision theoretic actions:
e.g. faster vs. safer

VI) --- Learning agents
Adapt and improve over time

Takes percepts
and selects actions

“Quick turn is not safe”

Try out the brakes on
 different road surfaces

No quick turn

Road conditions, etc

More complicated when agent needs to learn
utility information: Reinforcement learning

(based on action payoff)

Module:
 Learning

Summary: agent types
(1) Table-driven agents

–  use a percept sequence/action table in memory to find the next action. They
are implemented by a (large) lookup table.

(2) Simple reflex agents
–  are based on condition-action rules, implemented with an appropriate

production system. They are stateless devices which do not have memory of
past world states.

(3) Agents with memory - Model-based reflex agents
–  have internal state, which is used to keep track of past states of the world.

(4) Agents with goals – Goal-based agents
–  are agents that, in addition to state information, have goal information that

describes desirable situations. Agents of this kind take future events into
consideration.

(5) Utility-based agents
–  base their decisions on classic axiomatic utility theory in order to act

rationally.
(6) Learning agents

–  they have the ability to improve performance through learning.

An agent perceives and acts in an environment, has an architecture, and is implemented
by an agent program.

A rational agent always chooses the action which maximizes its expected performance,
given its percept sequence so far.

An autonomous agent uses its own experience rather than built-in knowledge of the
environment by the designer.

An agent program maps from percept to action and updates its internal state.
–  Reflex agents (simple / model-based) respond immediately to percepts.
–  Goal-based agents act in order to achieve their goal(s), possible sequence of steps.
–  Utility-based agents maximize their own utility function.
–  Learning agents improve their performance through learning.

Representing knowledge is important for successful agent design.

The most challenging environments are partially observable, stochastic, sequential,

dynamic, and continuous, and contain multiple intelligent agents.

Reading: Chapter 2 R&N

