Ungraded quiz: camera calibration and stereo

May 3, 2020

1. When performing camera calibration, we set up a system of equations \(A\|p\| = 0 \) in the parameters \(p \) that define the camera projection matrix. We then tried to minimize \(A\|p\| \) subject to \(\|p\| = 1 \). Here, we constrain \(\|p\| = 1 \) because:

(a) A camera projection matrix is valid only if its Frobenius norm is 1.
(b) The constraint makes the optimization easier to implement.
(c) The correspondences used to form \(A \) might be noisy.
(d) The equations \(A\|p\| = 0 \) are not sufficient to produce a unique matrix \(P \), and will produce a family of solutions.

(d) is correct. Because the projection equations are all expressed in homogeneous coordinates, if \(P \) is a solution, so is \(\alpha P \). To isolate a single solution, we need to add a constraint on the Frobenius norm.

2. For a particular camera, the intrinsic camera parameters are \(K = I \). Its projection matrix \(P \) is one of the following. Which is it?

(a) \[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]
(b) \[
\begin{bmatrix}
0.8 & 0.6 & 0 \\
-0.6 & 0.8 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
(c) \[
\begin{bmatrix}
0.8 & 0.6 & 0 & 5 \\
-0.6 & 0.8 & 0 & 7 \\
0 & 0 & 1 & 1
\end{bmatrix}
\]
(d) \[
\begin{bmatrix}
3 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 \\
0 & 0 & 7 & 0
\end{bmatrix}
\]

\(P \) is a \(3 \times 4 \) matrix. If \(K \) is identity, then \(P = [R \; t] \), where \(R \) is a rotation
matrix. Thus the first 3×3 submatrix of P must be a rotation matrix. This in turn means that the first 3 columns of P must be (a) orthogonal to each other, and (b) unit norm. Only (c) satisfies this constraint.

3. Two cameras are looking at a scene. They have projection matrices

\[P^{(1)} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \text{and} \quad P^{(2)} = \begin{bmatrix} 0.8 & 0 & 0.6 & -4 \\ 0 & 1 & 0 & 0 \\ -0.6 & 0 & 0.8 & 3 \end{bmatrix}. \]

A 3D world point appears in the first image at the location $(2, 0)$, and in the second image at location $(-18, 0)$ (Each tuple is the (x,y) coordinates). What is the 3D location of this world point?

Suppose the world point is \(\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \). From the first camera, we have:

\[
\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \equiv P^{(1)} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \quad (1)
\]

\[
\Rightarrow \lambda \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = P^{(1)} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \quad (2)
\]

\[
\Rightarrow \lambda \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \quad (3)
\]

\[
\Rightarrow 2\lambda = X \\
0 = Y \\
\lambda = Z
\]

\[
\Rightarrow X = 2Z \quad (4)
\]

\[
Y = 0
\]

(6)
Let us now look at the second camera:

\[
\begin{bmatrix}
-18 \\
0 \\
1
\end{bmatrix} \equiv P^{(2)} \begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix}
\]
(7)

\[
\Rightarrow \lambda \begin{bmatrix}
-18 \\
0 \\
1
\end{bmatrix} = P^{(2)} \begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix}
\]
(8)

\[
\Rightarrow -18\lambda = 0.8X + 0.6Z - 4
\]
\[
0 = Y
\]
\[
\lambda = -0.6X + 0.8Z + 3
\]
(9)

Substituting \(X = 2Z\) in the first and third equations, we get:

\[
-18\lambda = 2.2Z - 4 \quad (10)
\]
\[
\lambda = -0.4Z + 3 \quad (11)
\]
\[
\Rightarrow -18(-0.4Z + 3) = 2.2Z - 4 \quad (12)
\]
\[
\Rightarrow 7.2Z - 54 = 2.2Z - 4 \quad (13)
\]
\[
\Rightarrow 5Z = 50 \quad (14)
\]
\[
\Rightarrow Z = 10 \quad (15)
\]
\[
\Rightarrow X = 20 \quad (16)
\]

Thus, the point is \((20, 0, 10)\).