
Recognition



Image classification

• Given an image, produce a label
• Label can be:
• 0/1 or yes/no: Binary classification
• one-of-k: Multiclass classification
• 0/1 for each of k concepts: Multilabel classification



Image classification - Binary classification

Is this a dog? 
Yes



Image classification - Multiclass classification

Which of these is it: 
dog, cat or zebra? 
Dog



Image classification - Multilabel classification

Is this a dog? Yes
Is this furry? Yes
Is this sitting down? Yes



A history of classification : MNIST

• 2D
• 10 classes
• 6000 examples per class

1990’s



A history of classification : Caltech 101

• 101 classes
• 10 classes
• 30 examples per class
• Strong category-

specific biases
• Clean images

1990’s

MNIST

2004



A history of classification: PASCAL VOC

• 20 classes
• ~500 examples per 

class
• Clutter, occlusion, 

natural scenes

1990’s

MNIST

2004

Caltech 101

2007-2012



A history of classification: ImageNet

• 1000 classes
• ~1000 examples per 

class
• Mix of cluttered and 

clean images

1990’s

MNIST

2004

Caltech 101

2007-2013

PASCAL VOC

2013-2017



Why is recognition hard?

Pose variation



Why is recognition hard?

Lighting variation



Why is recognition hard?

Scale variation



Why is recognition hard?

Clutter and occlusion



Why is recognition hard?

Intrinsic intra-class variation



Why is recognition hard?

Inter-class similarity



The language of recognition

• Boundaries of classes are often fuzzy
• “A dog is an animal with four legs, a tail and a snout”
• Really?



The language of recognition

• “… Practically anything can happen in an image and furthermore 
practically everything did” - Marr
• Much better to talk in terms of probabilities

• Joint distribution of images and labels : P(x,y)
• Conditional distribution of labels given image : P(y|x)

X :Images

Y :Labels

D :Distribution over X ⇥ Y



Learning

• We are interested in the conditional distribution
• Key idea: teach computer visual concepts by providing examples

X :Images

Y :Labels

D :Distribution over X ⇥ Y

P (y|x)

S = {(xi, yi) ⇠ D, i = 1, . . . , n}Training 
Set



Example

• Binary classifier “Dog” or ”not Dog”
• Labels: {0, 1}
• Training set

, 1), , 1), , 0) , … }{( ( (



Choosing a model class

• Will try and find P(y = 1 | x)
• P(y=0 | x) = 1 - P(y=1 | x)
• Need to find
• But: enormous number of possible mappings

h : X ! [0, 1]



Choosing a model class

• Assume h is a linear classifier in feature space
• Feature space?
• Linear classifier?

h : X ! [0, 1]



Feature space: representing images as vectors

• Represent an image as a vector in 
• Simple way: step 1: convert image to gray-scale and 

resize to fixed size

Rd



Feature space: representing images as vectors

• Step 2: Flatten 2D array into 1D vector



Feature space: representing images as vectors

• Can represent this as a function that takes an image 
and converts into a vector

� ( )    =



Linear classifiers

• Given an image, can use ! to get a vector and plot it as a point in high 
dimensional space



Linear classifiers

• A linear classifier 
corresponds to a 
hyperplane
• Equivalent of a line in 

high-dimensional space
• Equation: !"# + % = 0

• Points on the same side 
are the same class



Linear classifiers

• p(y = 1 | x) is high on the red side 
and low on the blue side
• A common way of defining p:

! " = 1 %) = ' ()% + +
= 1
1 + ,-(/0123)

sigmoid function



Linear classifiers in feature space

�(s) =
1

1 + e�s

h(x;w, b) = �(wT�(x) + b)
!(#)

#



Linear classifiers in feature space

• Family of functions depending on w and b
• Each function is called a hypothesis
• Family is called a hypothesis class
• Hypotheses indexed by w and b
• Need to find the best hypothesis = need to find 

best w and b
• w and b are called parameters

h(x;w, b) = �(wT�(x) + b)



Training: Choosing the best hypothesis

• Use training set to find best-fitting hypothesis
! = { $%, '% : ) = 1,… , ,}

• Question: how do we define fit?



Training: Choosing the best hypothesis

• Use training set to find best-fitting hypothesis
• Question: how do we define fit?
• Given (x,y), and candidate hypothesis ℎ(⋅;%, ')
• ℎ();%, ') is estimated probability label is 1
• Idea: compute estimated probability for true label y
• Want this probability to be high
• Likelihood

li(h(x;w, b), y) =

⇢
h(x;w, b) if y = 1
1� h(x;w, b) ow



An alternate expression for the hypothesis

li(h(x;w, b), y) =

⇢
h(x;w, b) if y = 1
1� h(x;w, b) ow



An alternate expression for the hypothesis

li(h(x;w, b), y) =

⇢
h(x;w, b) if y = 1
1� h(x;w, b) ow

li(h(x;w, b), y) = h(x;w, b)y(1� h(x;w, b))(1�y)



Training: Choosing the best hypothesis

• Likelihood of a single data point
• Fit = total likelihood of entire training dataset

S = {(xi, yi) ⇠ D, i = 1, . . . , n}
nY

i=1

h(xi;w, b)yi(1� h(xi;w, b))(1�yi)

li(h(x;w, b), y) = h(x;w, b)y(1� h(x;w, b))(1�y)



Training: Choosing the best hypothesis

• Use log likelihood

• Pick the hypothesis that maximizes log likelihood
• Each hypothesis corresponds to a setting of w and b
• Maximization problem

nY

i=1

h(xi;w, b)yi(1� h(xi;w, b))(1�yi)

lli(w, b) =
nX

i=1

yi log h(xi;w, b) + (1� yi) log(1� h(xi;w, b))

max
w,b

nX

i=1

yi log h(xi;w, b) + (1� yi) log(1� h(xi;w, b))



Training: Choosing the best hypothesis

• Maximizing log likelihood = Minimizing average negative log 
likelihood

max
w,b

nX

i=1

yi log h(xi;w, b) + (1� yi) log(1� h(xi;w, b))

⌘ min
w,b

�(
nX

i=1

yi log h(xi;w, b) + (1� yi) log(1� h(xi;w, b)))

⌘ min
w,b

�1

n
(

nX

i=1

yi log(h(xi;w, b)) + (1� yi) log(1� h(xi;w, b)))



Training: Choosing the best hypothesis

• Negative log likelihood is a loss function

• Training = minimizing average loss on a training set

L(h(x;w, b), y) = �y log h(x;w, b) + (1� y) log(1� h(x;w, b))

min
w,b

1

n

nX

i=1

L(h(xi;w, b), yi)



General recipe

• Fix hypothesis class

• Define loss function

• Minimize average loss on the training set

• Why should this work?
• How do we do the minimization in practice

h(x;w, b) = �(wT�(x) + b)

L(h(x;w, b), y) = �y log h(x;w, b) + (1� y) log(1� h(x;w, b))

min
w,b

1

n

nX

i=1

L(h(xi;w, b), yi)



Training = Optimization

• Need to minimize an objective

• More generally, objective takes the form

⌘ min
✓

F (✓)

min
w,b

1

n

nX

i=1

L(h(xi;w, b), yi)

min
✓

1

n

nX

i=1

f(xi, yi,✓)



Training = optimization

• How do we minimize this?
• Start from an initial estimate
• Iteratively reduce F. How?

⌘ min
✓

F (✓)min
✓

1

n

nX

i=1

f(xi, yi,✓)



Optimization and function gradients

• Suppose current estimate is !(#)
• Consider changing this to ! # + Δ!
• How does the objective value change?
• For small Δ!, can approximate F using Taylor expansion 
• F is locally linear 

F (✓(t) +�✓) ⇡ F (✓(t)) +rF (✓(t))T�✓

) F (✓(t) +�✓)� F (✓(t)) ⇡ rF (✓(t))T�✓



Optimization and function gradients

• We want                                           to be negative
• As highly negative as possible

• So we want                           to be as negative as 
possible

• ! is step size   

F (✓(t) +�✓)� F (✓(t))

rF (✓(t))T�✓

�✓ = ��rF (✓(t))

) rF (✓(t))T�✓ = ��krF (✓(t))k2

) F (✓(t) +�✓)� F (✓(t)) ⇡ rF (✓(t))T�✓



Optimization using gradient descent

• Randomly initialize ! "

• For i = 1 to max_iterations:
• Compute gradient of F at ! #

• ! #$% ← ! # − (∇*(! # )
• Function value will decrease by (||∇* ! # ||.

• Repeat until ||∇* ! # ||. drops below a threshold



Gradient descent

https://yihui.name/animation/example/grad-desc/



Gradient descent - convergence

• Every step leads to a reduction in the function value
• If function is bounded below, we will eventually stop 
• But will we stop at the right “global minimum”?
• Not necessarily: local optimum!

Local min

Global 
min



Gradient descent in machine learning

• Computing the gradient requires a loop over all 
training examples
• Very expensive for large datasets

⌘ min
✓

F (✓)min
✓

1

n

nX

i=1

f(xi, yi,✓)

rF (✓) =
1

n

nX

i=1

rf(xi, yi,✓)



Stochastic gradient descent

• Gradient is average of per-example gradient
• Can get an estimate of the average by using a small 

random sample (called a “minibatch”)

• Take step along estimated gradient
• Stochastic gradient descent!

rF (✓) =
1

n

nX

i=1

rf(xi, yi,✓)

rF (✓) ⇡ 1

k

kX

j=1

rf(xij , yij ,✓)



General recipe

• Fix hypothesis class

• Define loss function

• Minimize average loss on the training set using SGD

h(x;w, b) = �(wT�(x) + b)

L(h(x;w, b), y) = �y log h(x;w, b) + (1� y) log(1� h(x;w, b))

Logistic Regression!

min
w,b

1

n

nX

i=1

L(h(xi;w, b), yi)



General recipe

• Fix hypothesis class

• Define loss function

• Minimize average loss on the training set using SGD

• Why should this work?

h(x;w, b) = �(wT�(x) + b)

L(h(x;w, b), y) = �y log h(x;w, b) + (1� y) log(1� h(x;w, b))

min
w,b

1

n

nX

i=1

L(h(xi;w, b), yi)



Why should this work?

• Let us look at the objective more carefully

• We are minimizing average loss on the training set
• Is this what we actually care about?

min
w,b

1

n

nX

i=1

L(h(xi;w, b), yi)



Risk
• Given:
• Distribution       over (x,y) pairs
• A hypothesis                 from hypothesis class H
• Loss function L

• We are interested in Expected Risk (think of this as “Error”):

• Given training set S, and a particular hypothesis h, Empirical Risk 
(Training error):

D
h 2 H

R(h) = E(x,y)⇠DL(h(x), y)

R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)



Risk

• Left: true quantity of interest, right: estimate
• How good is this estimate?
• If h is randomly chosen, actually a pretty good estimate!
• In statistics-speak, it is an unbiased estimator : correct in expectation 

R(h) = E(x,y)⇠DL(h(x), y) R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)

ES⇠DnR̂(S, h) = R(h)



Risk

• Empirical risk unbiased estimate of expected risk
• Want to minimize expected risk
• Idea: Minimize empirical risk instead
• This is the Empirical Risk Minimization Principle

h⇤ = arg min
h2H

R̂(S, h)

R(h) = E(x,y)⇠DL(h(x), y) R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)



Overfitting

• For randomly chosen h, empirical risk (training error) good estimate of 
expected risk
• But we are choosing h by minimizing training error
• Empirical risk of chosen hypothesis no longer unbiased estimate:
• We chose hypothesis based on S
• Might have chosen h for which S is a special case

• Overfitting:
• Minimize training error, but generalization error increases



Overfitting = fitting the noise

True distribution

Minim
ize

r o
f e

xpecte
d ris

k

Minimizer of empirical risk

Sampled training set



Generalization

R(h) = R̂(S, h) + (R(h)� R̂(S, h))

Training 
error

Generalization 
error

R(h) = E(x,y)⇠DL(h(x), y) R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)



Controlling generalization error

• Variance of empirical risk inversely proportional to size of S (central 
limit theorem)
• Choose very large S!

• Larger the hypothesis class H, Higher the chance of hitting bad 
hypotheses with low training error and high generalization error
• Choose small H!

• For many models, can bound generalization error using some 
property of parameters
• “Regularization”



Controlling the size of the hypothesis class

• How many parameters (w, b) are there to find?
• Depends on dimensionality of !
• Large dimensionality = large number of parameters = more chance of 

overfitting
• Rule of thumb: size of training set should be at least 10x number of 

parameters
• Often training sets are much smaller 

h(x;w, b) = �(wT�(x) + b)



Regularization

• Old objective

• New objective

• Why does this help?

min
w,b

NX

i=1

L(h(xi;w, b), yi)

min
w,b

NX

i=1

L(h(xi;w, b), yi) + �kwk2



Regularization

• Ensures classifier does not weigh any one feature too highly
• Makes sure classifier scores vary slowly when image changes

min
w,b

NX

i=1

L(h(xi;w, b), yi) + �kwk2

|wT�(x1)�wT�(x2)|  kwkk�(x1)� �(x2)k



Controlling generalization error

• How do we know we are overfitting?
• Use a held-out “validation set”
• To be an unbiased sample, must be completely unseen

• Choose hypothesis class, regularization etc that lowers validation 
error
• Note: to get final estimate of expected risk, need another held-out 

set: the “test set”



Putting it all together

• Want model with least expected risk = expected loss
• But expected risk hard to evaluate
• Empirical Risk Minimization: minimize empirical risk in training set
• Might end up picking special case: overfitting
• Avoid overfitting by:
• Constructing large training sets
• Reducing size of model class
• Regularization



Putting it all together

• Collect training set and validation set
• Pick hypothesis class
• Pick loss function
• Minimize empirical risk (+ regularization)
• Measure performance on held-out validation set
• Profit!



Loss functions and hypothesis classes



Back to images

• What should ! be?
• Simplest solution: string 2D image intensity values 

into vector

h(x;w, b) = �(wT�(x) + b)


