Recognition

Image classification

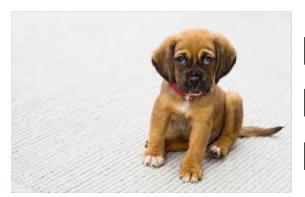
- Given an image, produce a label
- Label can be:
 - 0/1 or yes/no: *Binary classification*
 - one-of-k: Multiclass classification
 - 0/1 for each of k concepts: *Multilabel classification*

Image classification - Binary classification

Image classification - Multiclass classification

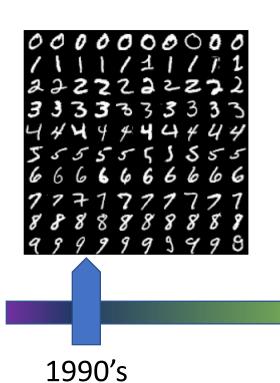
Which of these is it: dog, cat or zebra? Dog

Image classification - Multilabel classification



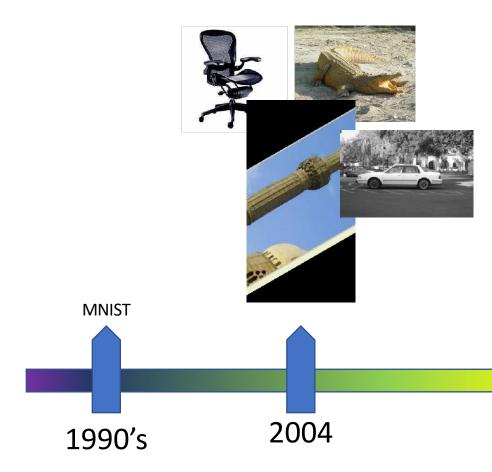
Is this a dog? Yes Is this furry? Yes Is this sitting down? Yes

A history of classification : MNIST



- 2D
- 10 classes
- 6000 examples per class

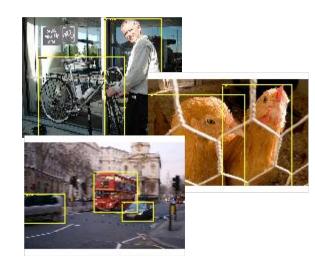
A history of classification : Caltech 101

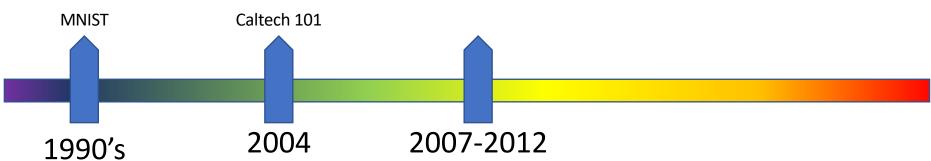


- 101 classes
- 10 classes
- 30 examples per class
- Strong categoryspecific biases
- Clean images

A history of classification: PASCAL VOC

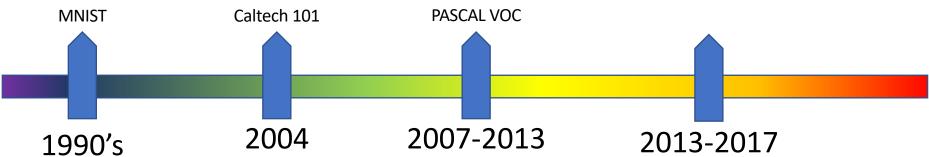
- 20 classes
- ~500 examples per class
- Clutter, occlusion, natural scenes





A history of classification: ImageNet

- 1000 classes
- ~1000 examples per class
- Mix of cluttered and clean images



Pose variation

Lighting variation

Scale variation

Clutter and occlusion

Intrinsic intra-class variation

Inter-class similarity

The language of recognition

- Boundaries of classes are often fuzzy
- "A dog is an animal with four legs, a tail and a snout"
- Really?

The language of recognition

- "... Practically anything can happen in an image and furthermore practically everything did" Marr
- Much better to talk in terms of *probabilities*

 $\begin{array}{l} \mathcal{X} : \text{Images} \\ \mathcal{Y} : \text{Labels} \\ \mathcal{D} : \text{Distribution over } \mathcal{X} \times \mathcal{Y} \end{array}$

- Joint distribution of images and labels : P(x,y)
- Conditional distribution of labels given image : P(y|x)

Learning

- We are interested in the conditional distribution P(y|x)
- Key idea: teach computer visual concepts by providing examples

 $\begin{array}{l} \mathcal{X} : \mathrm{Images} \\ \mathcal{Y} : \mathrm{Labels} \\ \mathcal{D} : \mathrm{Distribution \ over} \ \mathcal{X} \times \mathcal{Y} \end{array}$

Training
$$S = \{(x_i, y_i) \sim \mathcal{D}, i = 1, \dots, n\}$$

Example

- Binary classifier "Dog" or "not Dog"
- Labels: {0, 1}
- Training set

Choosing a model class

- Will try and find P(y = 1 | x)
- P(y=0 | x) = 1 P(y=1 | x)
- Need to find $h: \mathcal{X} \to [0, 1]$
- But: enormous number of possible mappings

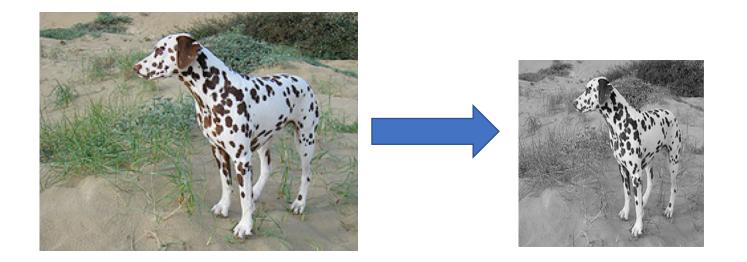
Choosing a model class

 $h: \mathcal{X} \to [0, 1]$

- Assume h is a linear classifier in feature space
- Feature space?
- Linear classifier?

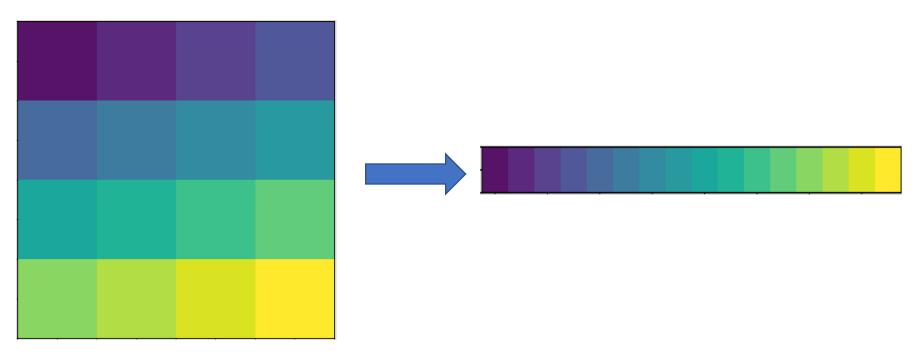
Feature space: representing images as vectors

- Represent an image as a vector in \mathbb{R}^d
- Simple way: step 1: convert image to gray-scale and resize to fixed size



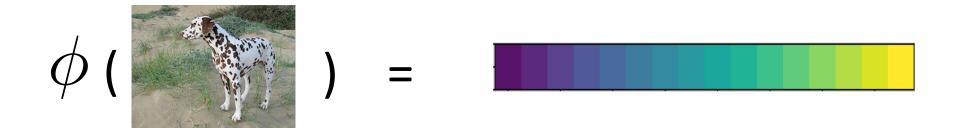
Feature space: representing images as vectors

• Step 2: Flatten 2D array into 1D vector



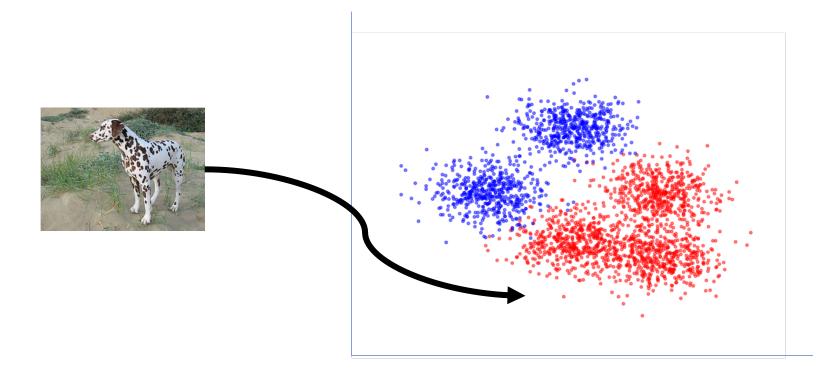
Feature space: representing images as vectors

• Can represent this as a *function* that takes an image and converts into a vector



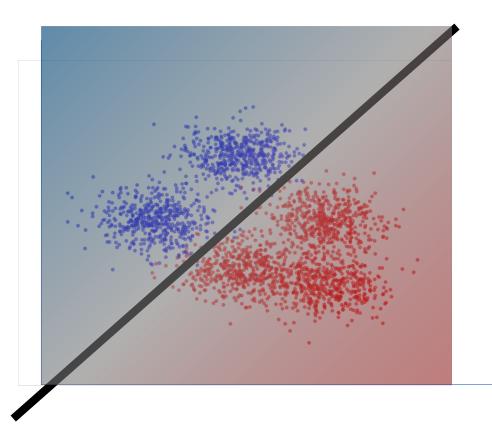
Linear classifiers

- Given an image, can use ϕ to get a vector and plot it as a point in high dimensional space



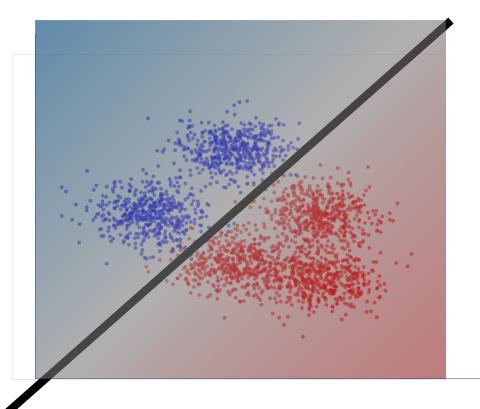
Linear classifiers

- A linear classifier corresponds to a hyperplane
 - Equivalent of a line in high-dimensional space
 - Equation: $w^T x + b = 0$
- Points on the same side are the same class



Linear classifiers

- p(y = 1 | x) is high on the red side and low on the blue side
- A common way of defining p: $p(y = 1 | x) = \sigma(w^{T}x + b)$ $= \underbrace{1}_{1 + e^{-(w^{T}x + b)}}_{\text{sigmoid function}}$



Linear classifiers in feature space

$$h(x; \mathbf{w}, b) = \sigma(\mathbf{w}^T \phi(x) + b)$$

$$\sigma(s) = \frac{1}{1 + e^{-s}}$$

S

Linear classifiers in feature space

$$h(x; \mathbf{w}, b) = \sigma(\mathbf{w}^T \phi(x) + b)$$

- Family of functions depending on w and b
- Each function is called a *hypothesis*
- Family is called a *hypothesis class*
- Hypotheses indexed by **w** and b
- Need to find the best hypothesis = need to find best w and b
- w and b are called *parameters*

- Use training set to find *best-fitting* hypothesis $S = \{(x_i, y_i): i = 1, ..., n\}$
- Question: how do we define fit?

- Use training set to find *best-fitting* hypothesis
- Question: how do we define fit?
- Given (x,y), and candidate hypothesis $h(\cdot; \mathbf{w}, b)$
 - $h(x; \mathbf{w}, b)$ is estimated probability label is 1
 - Idea: compute estimated probability for true label y
 - Want this probability to be high
 - Likelihood

$$li(h(x; \mathbf{w}, b), y) = \begin{cases} h(x; \mathbf{w}, b) & \text{if } y = 1\\ 1 - h(x; \mathbf{w}, b) & \text{ow} \end{cases}$$

An alternate expression for the hypothesis

$$li(h(x; \mathbf{w}, b), y) = \begin{cases} h(x; \mathbf{w}, b) & \text{if } y = 1\\ 1 - h(x; \mathbf{w}, b) & \text{ow} \end{cases}$$

An alternate expression for the hypothesis

$$li(h(x; \mathbf{w}, b), y) = \begin{cases} h(x; \mathbf{w}, b) & \text{if } y = 1\\ 1 - h(x; \mathbf{w}, b) & \text{ow} \end{cases}$$

$$li(h(x; \mathbf{w}, b), y) = h(x; \mathbf{w}, b)^y (1 - h(x; \mathbf{w}, b))^{(1-y)}$$

 $li(h(x; \mathbf{w}, b), y) = h(x; \mathbf{w}, b)^y (1 - h(x; \mathbf{w}, b))^{(1-y)}$

- Likelihood of a single data point
- Fit = total likelihood of entire training dataset

$$S = \{(x_i, y_i) \sim \mathcal{D}, i = 1, \dots, n\}$$
$$\prod_{i=1}^{n} h(x_i; \mathbf{w}, b)^{y_i} (1 - h(x_i; \mathbf{w}, b))^{(1-y_i)}$$

$$\prod_{i=1}^{n} h(x_i; \mathbf{w}, b)^{y_i} (1 - h(x_i; \mathbf{w}, b))^{(1-y_i)}$$

• Use log likelihood

$$lli(\mathbf{w}, b) = \sum_{i=1}^{n} y_i \log h(x_i; \mathbf{w}, b) + (1 - y_i) \log(1 - h(x_i; \mathbf{w}, b))$$

- Pick the hypothesis that maximizes log likelihood
 - Each hypothesis corresponds to a setting of **w** and b
 - Maximization problem

$$\max_{\mathbf{w},b} \sum_{i=1}^{n} y_i \log h(x_i; \mathbf{w}, b) + (1 - y_i) \log(1 - h(x_i; \mathbf{w}, b))$$

• Maximizing log likelihood = *Minimizing average negative log likelihood*

$$\max_{\mathbf{w},b} \sum_{i=1}^{n} y_i \log h(x_i; \mathbf{w}, b) + (1 - y_i) \log(1 - h(x_i; \mathbf{w}, b))$$

$$\equiv \min_{\mathbf{w},b} - \left(\sum_{i=1}^{n} y_i \log h(x_i; \mathbf{w}, b) + (1 - y_i) \log(1 - h(x_i; \mathbf{w}, b))\right)$$

$$\equiv \min_{\mathbf{w},b} \frac{-1}{n} \left(\sum_{i=1}^{n} y_i \log(h(x_i; \mathbf{w}, b)) + (1 - y_i) \log(1 - h(x_i; \mathbf{w}, b))\right)$$

Training: Choosing the best hypothesis

• Negative log likelihood is a *loss function*

$$L(h(x; \mathbf{w}, b), y) = -y \log h(x; \mathbf{w}, b) + (1 - y) \log(1 - h(x; \mathbf{w}, b))$$

• Training = minimizing average loss on a training set

$$\min_{\mathbf{w},b} \frac{1}{n} \sum_{i=1}^{n} L(h(x_i; \mathbf{w}, b), y_i)$$

General recipe

• Fix hypothesis class

$$h(x; \mathbf{w}, b) = \sigma(\mathbf{w}^T \phi(x) + b)$$

• Define loss function

 $L(h(x; \mathbf{w}, b), y) = -y \log h(x; \mathbf{w}, b) + (1 - y) \log(1 - h(x; \mathbf{w}, b))$

• Minimize average loss on the training set

$$\min_{\mathbf{w},b} \frac{1}{n} \sum_{i=1}^{n} L(h(x_i; \mathbf{w}, b), y_i)$$

- Why should this work?
- How do we do the minimization in practice

Training = Optimization

- Need to minimize an objective $\min_{\mathbf{w},b} \frac{1}{n} \sum_{i=1}^{n} L(h(x_i;\mathbf{w},b),y_i)$
- More generally, objective takes the form

$$\min_{\boldsymbol{\theta}} \frac{1}{n} \sum_{i=1}^{n} f(x_i, y_i, \boldsymbol{\theta}) \equiv \min_{\boldsymbol{\theta}} F(\boldsymbol{\theta})$$

Training = optimization

$$\min_{\boldsymbol{\theta}} \frac{1}{n} \sum_{i=1}^{n} f(x_i, y_i, \boldsymbol{\theta}) \equiv \min_{\boldsymbol{\theta}} F(\boldsymbol{\theta})$$

- How do we minimize this?
- Start from an initial estimate
- Iteratively reduce F. How?

Optimization and function gradients

- Suppose current estimate is $\boldsymbol{\theta}^{(t)}$
- Consider changing this to $\boldsymbol{\theta}^{(t)} + \Delta \boldsymbol{\theta}$
- How does the objective value change?
- For small $\Delta \theta$, can approximate F using Taylor expansion
 - F is locally linear

$$F(\boldsymbol{\theta}^{(t)} + \Delta \boldsymbol{\theta}) \approx F(\boldsymbol{\theta}^{(t)}) + \nabla F(\boldsymbol{\theta}^{(t)})^T \Delta \boldsymbol{\theta}$$
$$\Rightarrow F(\boldsymbol{\theta}^{(t)} + \Delta \boldsymbol{\theta}) - F(\boldsymbol{\theta}^{(t)}) \approx \nabla F(\boldsymbol{\theta}^{(t)})^T \Delta \boldsymbol{\theta}$$

Optimization and function gradients

$$\Rightarrow F(\boldsymbol{\theta}^{(t)} + \Delta \boldsymbol{\theta}) - F(\boldsymbol{\theta}^{(t)}) \approx \nabla F(\boldsymbol{\theta}^{(t)})^T \Delta \boldsymbol{\theta}$$

- We want $F(\theta^{(t)} + \Delta \theta) F(\theta^{(t)})$ to be negative
 - As highly negative as possible
- So we want $\nabla F(\theta^{(t)})^T \Delta \theta$ to be as negative as possible

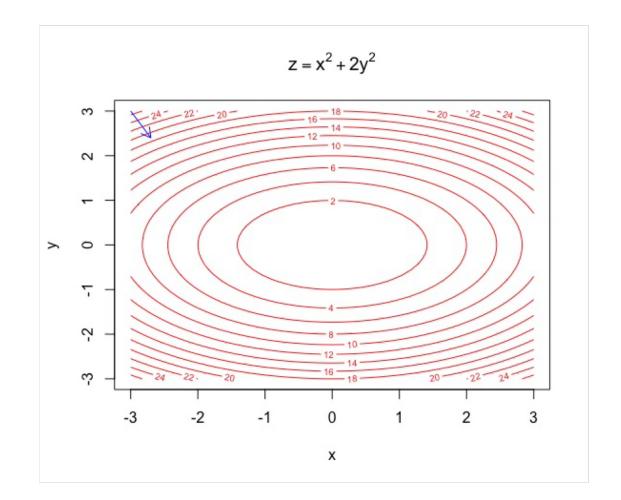
$$\Delta \boldsymbol{\theta} = -\lambda \nabla F(\boldsymbol{\theta}^{(t)})$$
$$\Rightarrow \nabla F(\boldsymbol{\theta}^{(t)})^T \Delta \boldsymbol{\theta} = -\lambda \|\nabla F(\boldsymbol{\theta}^{(t)})\|^2$$

• λ is step size

Optimization using gradient descent

- Randomly initialize $\boldsymbol{\theta}^{(0)}$
- For i = 1 to max_iterations:
 - Compute gradient of F at $\boldsymbol{\theta}^{(t)}$
 - $\boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} \lambda \nabla F(\boldsymbol{\theta}^{(t)})$
 - Function value will decrease by $\lambda || \nabla F(\boldsymbol{\theta}^{(t)}) ||^2$
 - Repeat until $||\nabla F(\boldsymbol{\theta}^{(t)})||^2$ drops below a threshold

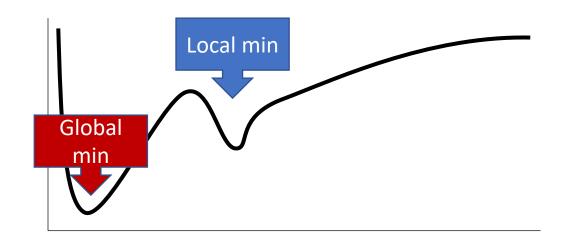
Gradient descent



https://yihui.name/animation/example/grad-desc/

Gradient descent - convergence

- Every step leads to a reduction in the function value
- If function is bounded below, we will eventually stop
- But will we stop at the right "global minimum"?
 - Not necessarily: local optimum!



Gradient descent in machine learning

$$\min_{\boldsymbol{\theta}} \frac{1}{n} \sum_{i=1}^{n} f(x_i, y_i, \boldsymbol{\theta}) \equiv \min_{\boldsymbol{\theta}} F(\boldsymbol{\theta})$$
$$\nabla F(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \nabla f(x_i, y_i, \boldsymbol{\theta})$$

- Computing the gradient requires a *loop over all training examples*
- Very expensive for large datasets

Stochastic gradient descent

$$\nabla F(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \nabla f(x_i, y_i, \boldsymbol{\theta})$$

- Gradient is *average* of per-example gradient
- Can get an *estimate* of the average by using a small random sample (called a "minibatch")

$$\nabla F(\boldsymbol{\theta}) \approx \frac{1}{k} \sum_{j=1}^{k} \nabla f(x_{i_j}, y_{i_j}, \boldsymbol{\theta})$$

- Take step along estimated gradient
- Stochastic gradient descent!

General recipe

Logistic Regression!

- Fix hypothesis class
 - $h(x; \mathbf{w}, b) = \sigma(\mathbf{w}^T \phi(x) + b)$
- Define loss function

 $L(h(x; \mathbf{w}, b), y) = -y \log h(x; \mathbf{w}, b) + (1 - y) \log(1 - h(x; \mathbf{w}, b))$

• Minimize average loss on the training set using SGD $\min_{\mathbf{w},b} \frac{1}{n} \sum_{i=1}^{n} L(h(x_i; \mathbf{w}, b), y_i)$

General recipe

- Fix hypothesis class $h(x; \mathbf{w}, b) = \sigma(\mathbf{w}^T \phi(x) + b)$
- Define loss function

 $L(h(x; \mathbf{w}, b), y) = -y \log h(x; \mathbf{w}, b) + (1 - y) \log(1 - h(x; \mathbf{w}, b))$

- Minimize average loss on the training set using SGD $\min_{\mathbf{w},b} \frac{1}{n} \sum_{i=1}^{n} L(h(x_i; \mathbf{w}, b), y_i)$
- Why should this work?

Why should this work?

• Let us look at the objective more carefully

$$\min_{\mathbf{w},b} \frac{1}{n} \sum_{i=1}^{n} L(h(x_i; \mathbf{w}, b), y_i)$$

- We are minimizing average loss on the training set
- Is this what we actually care about?

Risk

- Given:
 - Distribution over (x,y) pairs
 - A hypothesis \mathcal{D} from hypothesis class H
 - Loss function $L_{h \in H}$
- We are interested in Expected Risk (think of this as "Error"):

$$R(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}L(h(x),y)$$

 Given training set S, and a particular hypothesis h, Empirical Risk (Training error):

$$\hat{R}(S,h) = \frac{1}{|S|} \sum_{(x,y)\in S} L(h(x),y)$$

$$R(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}L(h(x),y) \qquad \hat{R}(S,h) = \frac{1}{|S|} \sum_{(x,y)\in S} L(h(x),y)$$

- Left: true quantity of interest, right: estimate
- How good is this estimate?
- If h is randomly chosen, actually a pretty good estimate!
 - In statistics-speak, it is an *unbiased estimator* : correct in expectation

$$\mathbb{E}_{S\sim\mathcal{D}^n}\hat{R}(S,h)=R(h)$$

Risk

- Empirical risk unbiased estimate of expected risk
- Want to minimize expected risk
- Idea: Minimize empirical risk instead
- This is the Empirical Risk Minimization Principle

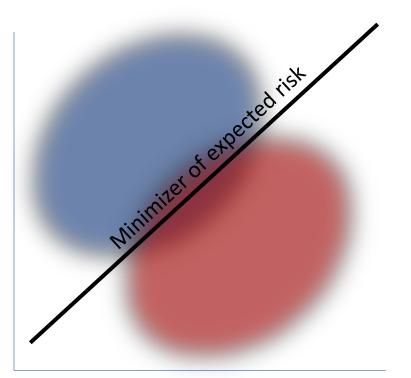
$$R(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}L(h(x),y) \qquad \hat{R}(S,h) = \frac{1}{|S|} \sum_{(x,y)\in S} L(h(x),y)$$

 $h^* = \arg\min_{h \in H} \hat{R}(S, h)$

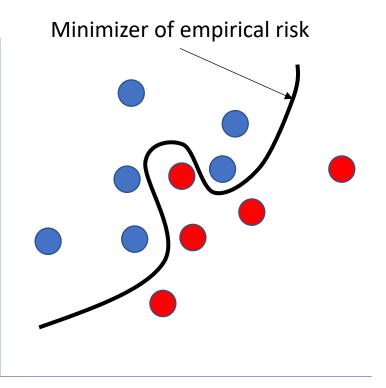
Overfitting

- For randomly chosen h, empirical risk (training error) good estimate of expected risk
- But we are *choosing* h by minimizing training error
- Empirical risk of chosen hypothesis *no longer* unbiased estimate:
 - We chose hypothesis based on S
 - Might have chosen h for which S is a special case
- Overfitting:
 - Minimize training error, but generalization error *increases*

Overfitting = fitting the noise



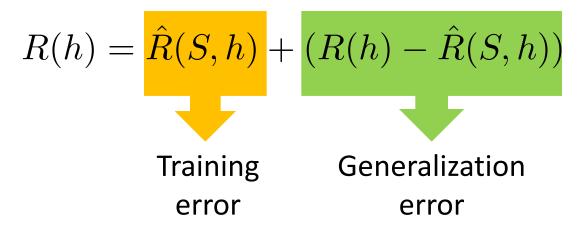
True distribution



Sampled training set

Generalization

$$R(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}L(h(x),y) \qquad \hat{R}(S,h) = \frac{1}{|S|} \sum_{(x,y)\in S} L(h(x),y)$$



Controlling generalization error

- Variance of empirical risk inversely proportional to size of S (central limit theorem)
 - Choose very large S!
- *Larger* the hypothesis class H, *Higher* the chance of hitting bad hypotheses with low training error and high generalization error
 - Choose small H!
- For many models, can *bound* generalization error using some property of parameters
 - "Regularization"

Controlling the size of the hypothesis class

$$h(x; \mathbf{w}, b) = \sigma(\mathbf{w}^T \phi(x) + b)$$

- How many parameters (w, b) are there to find?
- Depends on dimensionality of ϕ
- Large dimensionality = large number of parameters = more chance of overfitting
- Rule of thumb: size of training set should be at least 10x number of parameters
- Often training sets are much smaller

Regularization

• Old objective

$$\min_{\mathbf{w},b} \sum_{i=1}^{N} L(h(x_i; \mathbf{w}, b), y_i)$$

New objective

$$\min_{\mathbf{w},b} \sum_{i=1}^{N} L(h(x_i; \mathbf{w}, b), y_i) + \lambda \|\mathbf{w}\|^2$$

• Why does this help?

Regularization

$$\min_{\mathbf{w},b} \sum_{i=1}^{N} L(h(x_i; \mathbf{w}, b), y_i) + \lambda \|\mathbf{w}\|^2$$

- Ensures classifier does not weigh any one feature too highly
- Makes sure classifier scores *vary slowly* when image changes

$$|\mathbf{w}^T \phi(x_1) - \mathbf{w}^T \phi(x_2)| \le ||\mathbf{w}|| ||\phi(x_1) - \phi(x_2)||$$

Controlling generalization error

- How do we know we are overfitting?
 - Use a *held-out* "validation set"
 - To be an unbiased sample, must be completely *unseen*
- Choose hypothesis class, regularization etc that lowers validation error
- Note: to get final estimate of expected risk, need another held-out set: the "test set"

Putting it all together

- Want model with least expected risk = expected loss
- But expected risk hard to evaluate
- Empirical Risk Minimization: minimize empirical risk in training set
- Might end up picking special case: overfitting
- Avoid overfitting by:
 - Constructing large training sets
 - Reducing size of model class
 - Regularization

Putting it all together

- Collect training set and validation set
- Pick hypothesis class
- Pick loss function
- Minimize empirical risk (+ regularization)
- Measure performance on held-out validation set
- Profit!

Loss functions and hypothesis classes

Loss function	Problem	Range of h	${\mathcal Y}$	Formula
Log loss	Binary Classification	\mathbb{R}	$\{0,1\}$	$\log(1 + e^{-yh(x)})$
Negative log likelihood	Multiclass classification	$[0, 1]^k$	$\{1,\ldots,k\}$	$-\log h_y(x)$
Hinge loss	Binary Classification	\mathbb{R}	$\{0,1\}$	$\max(0, 1 - yh(x))$
MSE	Regression	\mathbb{R}	\mathbb{R}	$(y-h(x))^2$

Back to images

$$h(x; \mathbf{w}, b) = \sigma(\mathbf{w}^T \phi(x) + b)$$

- What should ϕ be?
- Simplest solution: string 2D image intensity values into vector