Image formation

The projection equation

$$
\begin{aligned}
x & =\frac{X}{Z} \\
y & =\frac{Y}{Z}
\end{aligned}
$$

Changing coordinate systems

Rotations and translations

- How do you represent a rotation?
- A point in 3D: (X,Y,Z)
- Rotations can be represented as a matrix multiplication
- What are the properties of v^{\prime} ot $\overline{\overline{t a}}$ io R Matrices?

Properties of rotation matrices

- Rotation does not change the length of vectors

$$
\begin{gathered}
\mathbf{v}^{\prime}=R \mathbf{v} \\
\left\|\mathbf{v}^{\prime}\right\|^{2}=\mathbf{v}^{\prime T} \mathbf{v}^{\prime} \\
=\mathbf{v}^{T} R^{T} R \mathbf{v} \\
\|\mathbf{v}\|^{2}=\mathbf{v}^{T} \mathbf{v} \\
\Rightarrow R^{T} R=I
\end{gathered}
$$

Properties of rotation matrices

$$
\begin{aligned}
& \Rightarrow R^{T} R=I \\
& \Rightarrow \operatorname{det}(R)^{2}=1 \\
& \Rightarrow \operatorname{det}(R)= \pm 1
\end{aligned}
$$

$$
\begin{array}{cc}
\operatorname{det}(R)=1 & \operatorname{det}(R)=-1 \\
\text { Rotation } & \text { Reflection }
\end{array}
$$

Rotation matrices

- Rotations in 3D have an axis and an angle
- Axis: vector that does not change when rotated

$$
R \mathbf{v}=\mathbf{v}
$$

- Rotation matrix has eigenvector that has eigenvalue 1

Rotation matrices from axis and angle

- Rotation matrix for rotation about axis \boldsymbol{v} and θ
- First define the following matrix

$$
[\mathbf{v}]_{\times}=\left[\begin{array}{ccc}
0 & -v_{z} & v_{y} \\
v_{z} & 0 & -v_{x} \\
-v_{y} & v_{x} & 0
\end{array}\right]
$$

- Interesting fact: this matrix represents cross product

$$
[\mathbf{v}]_{\times} \mathbf{x}=\mathbf{v} \times \mathbf{x}
$$

Rotation matrices from axis and angle

- Rotation matrix for rotation about axis \boldsymbol{v} and θ
- Rodrigues' formula for rotation matrices

$$
R=I+(\sin \theta)[\mathbf{v}]_{\times}+(1-\cos \theta)[\mathbf{v}]_{\times}^{2}
$$

Translations

$$
\mathbf{x}^{\prime}=\mathbf{x}+\mathbf{t}
$$

- Can this be written as a matrix multiplication?

Putting everything together

- Change coordinate system so that center of the coordinate system is at pinhole and Z axis is along viewing direction

$$
\mathbf{x}_{w}^{\prime}=R \mathbf{x}_{w}+\mathbf{t}
$$

- Perspective projection

$$
\begin{array}{rlr}
\mathbf{x}_{w}^{\prime} \equiv(X, Y, Z) & x=\frac{X}{Z} \\
{ }_{i m g}^{\prime} & \equiv(x, y) & y=\frac{Y}{Z}
\end{array}
$$

The projection equation

$$
\begin{aligned}
& x=\frac{X}{Z} \\
& y=\frac{Y}{Z}
\end{aligned}
$$

- Is this equation linear?
- Can this equation be represented by a matrix multiplication?

Is projection linear?

$$
\begin{aligned}
X^{\prime}=a X+b & x^{\prime}=\frac{a X+b}{a Z+b} \\
Y^{\prime}=a Y+b & \\
Z^{\prime}=a Z+b & y^{\prime}=\frac{a Y+b}{a Z+b}
\end{aligned}
$$

Can projection be represented as a matrix multiplication?

Matrix multiplication $\left[\begin{array}{lll}a & b & c \\ p & q & r\end{array}\right]\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\left[\begin{array}{l}a X+b Y+c Z \\ p X+q Y+r Z\end{array}\right]$

Perspective

$$
\begin{aligned}
& x=\frac{X}{Z} \\
& y=\frac{Y}{Z}
\end{aligned}
$$

The space of rays

- Every point on a ray maps it to a point on image plane
- Perspective projection maps rays to points
- All points ($\lambda x, \lambda y, \lambda)$ map to the same image point ($x, y, 1$)

Projective space

- Standard 2D space (plane) \mathbb{R}^{2} : Each point represented by 2 coordinates (x, y)
- Projective 2D space (plane) \mathbb{P}^{2} : Each "point" represented by 3 coordinates (x, y, z), BUT:
- $(\lambda x, \lambda y, \lambda z) \equiv(x, y, z)$
- Mapping \mathbb{R}^{2} to \mathbb{P}^{2} (points to rays):

$$
(x, y) \rightarrow(x, y, 1)
$$

- Mapping \mathbb{P}^{2} to \mathbb{R}^{2} (rays to points):

$$
(x, y, z) \rightarrow\left(\frac{x}{z}, \frac{y}{z}\right)
$$

Projective space and homogenous coordinates

- Mapping to \mathbb{E} (pointis'to rays):

$$
(x, y) \rightarrow(x, y, 1)
$$

- Mapping to \mathbb{P} (rays tor ${ }^{2}$ points):

$$
(x, y, z) \rightarrow\left(\frac{x}{z}, \frac{y}{z}\right)
$$

- A change of coordinates
- Also called homogenous coordinates

Homogenous coordinates

- In standard Euclidean coordinates
- 2D points : (x, y)
- 3D points : (x, y, z)
- In homogenous coordinates
- 2D points : $(x, y, 1)$
- 3D points: $(x, y, z, 1)$

Why homogenous coordinates?

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \equiv\left[\begin{array}{c}
\frac{X}{Z} \\
\frac{Y}{Z} \\
1
\end{array}\right]} \\
\begin{array}{c}
\text { Homogenous } \\
\text { coordinates of } \\
\text { world point }
\end{array}
\end{gathered}
$$

Why homogenous coordinates?

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \equiv\left[\begin{array}{c}
\frac{X}{Z} \\
\frac{Y}{Z} \\
1
\end{array}\right]} \\
P \overrightarrow{\mathbf{x}}_{w}=\overrightarrow{\mathbf{x}}_{i m g}
\end{gathered}
$$

- Perspective projection is matrix multiplication in homogenous coordinates!

Why homogenous coordinates?

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- Translation is matrix multiplication in homogenous coordinates!

Homogenous coordinates

$$
\begin{aligned}
& {\left[\begin{array}{llll}
a & b & c & t_{x} \\
d & e & f & t_{y} \\
g & h & i & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=} {\left[\begin{array}{c}
a X+b Y+c Z+t_{x} \\
d X+e Y+f Z+t_{y} \\
g X+h Y+i Z+t_{z} \\
1
\end{array}\right] } \\
& {\left[\begin{array}{cc}
M & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right]=\left[\begin{array}{c}
M \mathbf{x}_{w}+\mathbf{t} \\
1
\end{array}\right] }
\end{aligned}
$$

Homogenous coordinates

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \equiv\left[\begin{array}{c}
\frac{X}{Z} \\
\frac{Y}{Z} \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \longmapsto\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]
$$

Perspective projection in homogenous coordinates

$$
\begin{gathered}
\overrightarrow{\mathbf{x}}_{i m g}=\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]\left[\begin{array}{ll}
R & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
\overrightarrow{\mathbf{x}}_{i m g}=\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
\end{gathered}
$$

More about matrix transformations

$$
\begin{aligned}
& {\left[\begin{array}{cc}
I & \mathbf{0}
\end{array}\right] 3 \times 4: \text { Perspective projection }} \\
& {\left[\begin{array}{rr}
I & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] 4 \times 4: \text { Translation }} \\
& {\left[\begin{array}{cr}
M & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] \begin{array}{l}
4 \times 4: \text { Affine transformation } \\
\\
\\
\\
\text { (linear transformation }+ \\
\text { translation) }
\end{array}}
\end{aligned}
$$

More about matrix transformations

$$
\left[\begin{array}{ll}
M & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]
$$

$$
M^{T} M=I
$$

Euclidean

More about matrix transformations

$$
\begin{gathered}
{\left[\begin{array}{ll}
M & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]} \\
M=s R \\
R^{T} R=I \\
\quad \text { Similarity } \\
\text { transformation }
\end{gathered}
$$

More about matrix transformations

$$
\begin{aligned}
& {\left[\begin{array}{cc}
M & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]} \\
& M=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & s_{z}
\end{array}\right]
\end{aligned}
$$

Anisotropic scaling and translation

More about matrix transformations

$\left[\begin{array}{cc}M & \mathbf{t} \\ \mathbf{0}^{T} & 1\end{array}\right]$

General affine transformation

Matrix transformations in 2D

