Image recognition
General recipe

• Fix hypothesis class
 \[h(x; \mathbf{w}, b) = \sigma(\mathbf{w}^T \phi(x) + b) \]

• Define loss function
 \[L(h(x; \mathbf{w}, b), y) = -y \log h(x; \mathbf{w}, b) + (1 - y) \log(1 - h(x; \mathbf{w}, b)) \]

• Minimize average loss on the training set using SGD
 \[\min_{\mathbf{w}, b} \frac{1}{n} \sum_{i=1}^{n} L(h(x_i; \mathbf{w}, b), y_i) \]
Optimization using SGD

• Need to minimize average training loss

• Initialize parameters

• Repeat
 • Sample minibatch of k training examples

 • Compute average gradient of loss on minibatch

 • Take step along negative of average gradient

\[
\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} f(x_i, y_i, \theta)
\]

\[\theta^{(0)} \leftarrow \text{random}\]

for \(t = 1, \ldots, T \)

\[i_1, \ldots, i_k \sim \text{Uniform}(n)\]

\[g(t) \leftarrow \frac{1}{k} \sum_{j=1}^{k} \nabla f(x_{i_j}, y_{i_j}, \theta^{(t-1)})\]

\[\theta^{(t)} \leftarrow \theta^{(t-1)} - \lambda g^{(t)}\]
Overfitting = fitting the noise
Generalization

\[R(h) = \mathbb{E}_{(x,y) \sim D} L(h(x), y) \]
\[\hat{R}(S, h) = \frac{1}{|S|} \sum_{(x,y) \in S} L(h(x), y) \]

\[R(h) = \hat{R}(S, h) + (R(h) - \hat{R}(S, h)) \]

- **Training error**: \(\hat{R}(S, h) \)
- **Generalization error**: \((R(h) - \hat{R}(S, h)) \)
Controlling generalization error

• Variance of empirical risk inversely proportional to size of S (central limit theorem)
 • Choose very large S!

• *Larger* the hypothesis class H, *Higher* the chance of hitting bad hypotheses with low training error and high generalization error
 • Choose small H!

• For many models, can *bound* generalization error using some property of parameters
 • “Regularization”
Back to images
Linear classifiers on pixels are bad

- Solution 1: Better feature vectors
- Solution 2: Non-linear classifiers
Better feature vectors

These must have different feature vectors: \textit{discriminability}

These must have similar feature vectors: \textit{invariance}
SIFT

• Match *pattern of edges*
 • Edge orientation – clue to shape

• Be resilient to *small deformations*
 • Deformations might move pixels around, but slightly
 • Deformations might change edge orientations, but slightly

• *Not* resilient to large deformations: important for recognition

• Other feature representations exist
Linear classifiers on pixels are bad

- Solution 1: Better feature vectors
- Solution 2: Non-linear classifiers
Non-linear classifiers

• Suppose we have a feature vector for every image
Non-linear classifiers

• Suppose we have a feature vector for every image
 • Linear classifier
Non-linear classifiers

• Suppose we have a feature vector for every image
 • Linear classifier
 • Nearest neighbor: assign each point the label of the nearest neighbor
Non-linear classifiers

• Suppose we have a feature vector for every image
 • Linear classifier
 • Nearest neighbor: assign each point the label of the nearest neighbor
 • Decision tree: series of if-then-else statements on different features
Non-linear classifiers

• Suppose we have a feature vector for every image
 • Linear classifier
 • Nearest neighbor: assign each point the label of the nearest neighbor
 • Decision tree: series of if-then-else statements on different features
 • Neural networks
Non-linear classifiers

- Suppose we have a feature vector for every image
 - Linear classifier
 - Nearest neighbor: assign each point the label of the nearest neighbor
 - Decision tree: series of if-then-else statements on different features
 - Neural networks / multi-layer perceptrons
Multilayer perceptrons

• Key idea: build complex functions by composing simple functions
• Caveat: simple functions must include non-linearities
• $W(U(Vx)) = (WUV)x$
• Let us start with only two ingredients:
 • *Linear*: $y = Wx + b$
 • *Rectified linear unit (ReLU, also called half-wave rectification)*: $y = \max(x,0)$
The linear function

- $y = Wx + b$
- Parameters: W, b
- Input: x (column vector, or 1 data point per column)
- Output: y (column vector or 1 data point per column)
- Hyperparameters:
 - Input dimension = # of rows in x
 - Output dimension = # of rows in y
 - $W: \text{outdim} \times \text{indim}$
 - $b: \text{outdim} \times 1$
The linear function

- \(y = Wx + b \)
- Every row of \(y \) corresponds to a hyperplane in \(x \) space

\[d_{\text{out}} = d_{\text{in}} \]

The case when \(d_{\text{in}} = 2 \). A single row in \(y \) plotted for every possible value of \(x \)
Multilayer perceptrons

- Key idea: build complex functions by composing simple functions

\[
f(x) = Wx
\]

\[
g(x) = \max(x, 0)
\]
Multilayer perceptron on images

• An example network for cat vs dog

```
[Image 134x192 to 225x284]
```

```
256 256
```

```
65K
```

```
Reshape
```

```
256
```

```
256
```

```
1024
```

```
1024
```

```
32
```

```
Linear + ReLU
```

```
Linear + ReLU
```

```
Linear + sigmoid
```

```
p(dog | image)
```

The linear function

- \(y = Wx + b \)
- How many parameters does a linear function have?

The case when \(d_{in} = 2 \). A single row in \(y \) plotted for every possible value of \(x \).
The linear function for images

\[W \]
Reducing parameter count

• A single “pixel” in the output is a weighted combination of *all* input pixels
Reducing parameter count

- A single “pixel” in the output is a weighted combination of all input pixels
Idea 1: local connectivity

• Instead of inputs and outputs being general vectors suppose we keep both as 2D arrays.

• Reasonable assumption: output pixels only produced by nearby input pixels
Idea 2: Translation invariance

• Output pixels weighted combination of nearby pixels
• Weights should not depend on the location of the neighborhood
Linear function + translation invariance = \textit{convolution}

- Local connectivity determines kernel size

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>0.1</td>
<td>3.6</td>
</tr>
<tr>
<td>1.8</td>
<td>2.3</td>
<td>4.5</td>
</tr>
<tr>
<td>1.1</td>
<td>3.4</td>
<td>7.2</td>
</tr>
</tbody>
</table>
Linear function + translation invariance = \textit{convolution}

- Local connectivity determines kernel size
- Running a filter on a single image gives a single \textit{feature map}

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>0.1</td>
<td>3.6</td>
</tr>
<tr>
<td>1.8</td>
<td>2.3</td>
<td>4.5</td>
</tr>
<tr>
<td>1.1</td>
<td>3.4</td>
<td>7.2</td>
</tr>
</tbody>
</table>
Convolution with multiple filters

- Running multiple filters gives *multiple feature maps*
- Each feature map is a *channel* of the output

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>0.1</td>
<td>3.6</td>
</tr>
<tr>
<td>1.8</td>
<td>2.3</td>
<td>4.5</td>
</tr>
<tr>
<td>1.1</td>
<td>3.4</td>
<td>7.2</td>
</tr>
</tbody>
</table>
Convolution over multiple channels

• If the input also has multiple channels, each filter also has multiple channels, and output of a filter = sum of responses across channels
Convolution as a primitive

• To get \(c' \) output channels out of \(c \) input channels, we need \(c' \) filters of \(c \) channels each.
Kernel sizes and padding

• As with standard convolution, we can have "valid", "same" or "full" convolution (typically valid or same)
Kernel sizes and padding

- Valid convolution decreases size by \((k-1)/2\) on each side
- Pad by \((k-1)/2\)!
The convolution unit

• Each convolutional unit takes a collection of feature maps as input, and produces a collection of feature maps as output

• Parameters: Filters (+bias)

• If c_{in} input feature maps and c_{out} output feature maps
 • Each filter is $k \times k \times c_{in}$
 • There are c_{out} such filters

• Other hyperparameters: padding
Invariance to distortions: Subsampling

- Convolution by itself doesn’t grant invariance
- But by subsampling, large distortions become smaller, so more invariance
Convolution-subsampling-convolution

• Interleaving convolutions and subsamplings causes later convolutions to capture a *larger fraction of the image* with the same kernel size.

• Set of image pixels that an intermediate output pixel depends on = *receptive field*.

• Convolutions after subsamplings increase the receptive field.
Convolution subsampling convolution

• Convolution in earlier steps detects more local patterns less resilient to distortion
• Convolution in later steps detects more global patterns more resilient to distortion
• Subsampling allows capture of larger, more invariant patterns
Strided convolution

- Convolution with stride $s = \text{standard convolution} + \text{subsampling by picking 1 value every } s \text{ values}$
- Example: convolution with stride 2 = standard convolution + subsampling by a factor of 2
Invariance to distortions: Average Pooling

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>21</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Global average pooling

\[
\begin{array}{cccccc}
4 & 7 & 6 & 9 & 3 & 11 \\
8 & 3 & 21 & 4 & 0 & 0 \\
1 & 2 & 1 & 3 & 5 & 6 \\
7 & 9 & 4 & 3 & 1 & 8 \\
5 & 2 & 1 & 5 & 5 & 0 \\
0 & 1 & 6 & 4 & 5 & 6 \\
\end{array}
\]

\[w \times h \times c\]

\[1 \times 1 \times c\]

= c dimensional vector
The pooling unit

• Each pooling unit takes a collection of feature maps as input and produces a collection of feature maps as output
• Output feature maps are usually smaller in height / width
• Parameters: None
Convolutional networks
Convolutional networks
Empirical Risk Minimization

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(h(x_i; \theta), y_i)$$

Convolutional network

$$\theta^{(t+1)} = \theta^{(t)} - \lambda \frac{1}{N} \sum_{i=1}^{N} \nabla L(h(x_i; \theta), y_i)$$

Gradient descent update
Computing the gradient of the loss

\[\nabla L(h(x; \theta), y) \]

\[z = h(x; \theta) \]

\[\nabla_\theta L(z, y) = \frac{\partial L(z, y)}{\partial z} \frac{\partial z}{\partial \theta} \]
Convolutional networks
The gradient of convnets
The gradient of convnets

\[
\frac{\partial z}{\partial w_5}
\]
The gradient of convnets

\[
\frac{\partial z}{\partial w_4}
\]
The gradient of convnets

The gradient of convnets is given by:

$$\frac{\partial z}{\partial w_4} = \frac{\partial z}{\partial z_4} \frac{\partial z_4}{\partial w_4}$$
The gradient of convnets

\[
\frac{\partial z}{\partial w_4} = \frac{\partial z}{\partial z_4} \frac{\partial z_4}{\partial w_4}
\]
The gradient of convnets

\[
\frac{\partial z}{\partial w_4} = \frac{\partial z}{\partial z_4} \frac{\partial z_4}{\partial w_4} = \frac{\partial f_5(z_4, w_5)}{\partial z_4} \frac{\partial f_4(z_3, w_4)}{\partial w_4}
\]
The gradient of convnets

\[\frac{\partial z}{\partial w_4} = \frac{\partial z}{\partial z_4} \frac{\partial z_4}{\partial w_4} = \frac{\partial f_5(z_4, w_5)}{\partial z_4} \frac{\partial f_4(z_3, w_4)}{\partial w_4} \]
The gradient of convnets

\[
\frac{\partial z}{\partial w_4} = \frac{\partial z}{\partial z_4} \frac{\partial z_4}{\partial w_4} = \frac{\partial f_5(z_4, w_5)}{\partial z_4} \frac{\partial f_4(z_3, w_4)}{\partial w_4}
\]
The gradient of convnets

\[\frac{\partial z}{\partial w_3} \]
The gradient of convnets

\[
\frac{\partial z}{\partial w_3} = \frac{\partial z}{\partial z_3} \frac{\partial z_3}{\partial w_3}
\]
The gradient of convnets

\[
\frac{\partial z}{\partial w_3} = \frac{\partial z}{\partial z_3} \frac{\partial z_3}{\partial w_3}
\]
The gradient of convnets

\[
\frac{\partial z}{\partial w_3} = \frac{\partial z}{\partial z_3} \frac{\partial z_3}{\partial w_3}
\]

\[
\frac{\partial z}{\partial z_3} = \frac{\partial z}{\partial z_4} \frac{\partial z_4}{\partial z_3}
\]
The gradient of convnets

\[
\frac{\partial z}{\partial z_3} = \frac{\partial z}{\partial z_4} \frac{\partial z_4}{\partial z_3}
\]

\[
\frac{\partial z}{\partial w_3} = \frac{\partial z}{\partial z_3} \frac{\partial z_3}{\partial w_3}
\]
The gradient of convnets

\[
\frac{\partial z}{\partial z_2} = \frac{\partial z}{\partial z_3} \frac{\partial z_3}{\partial z_2} \\
\frac{\partial z}{\partial w_2} = \frac{\partial z}{\partial z_2} \frac{\partial z_2}{\partial w_2}
\]

Recurrence going backward!!
The gradient of convnets

Backpropagation
Backpropagation for a sequence of functions

\[z_i = f_i(z_{i-1}, w_i) \]
\[z_0 = x \]
\[z = z_n \]

\[\frac{\partial z}{\partial z_i} = \frac{\partial z}{\partial z_{i+1}} \frac{\partial z_{i+1}}{\partial z_i} \]

\[\frac{\partial z}{\partial w_i} = \frac{\partial z}{\partial z_i} \frac{\partial z_i}{\partial w_i} \]
Backpropagation for a sequence of functions

\[z_i = f_i(z_{i-1}, w_i) \quad z_0 = x \quad z = z_n \]

- Assume we can compute partial derivatives of each function

\[\frac{\partial z_i}{\partial z_{i-1}} = \frac{\partial f_i(z_{i-1}, w_i)}{\partial z_{i-1}} \quad \frac{\partial z_i}{\partial w_i} = \frac{\partial f_i(z_{i-1}, w_i)}{\partial w_i} \]

- Use \(g(z_i) \) to store gradient of \(z \) w.r.t \(z_i \), \(g(w_i) \) for \(w_i \)

- Calculate \(g_i \) by iterating backwards

\[g(z_n) = \frac{\partial z}{\partial z_n} = 1 \quad g(z_{i-1}) = \frac{\partial z}{\partial z_i} \frac{\partial z_i}{\partial z_{i-1}} = g(z_i) \frac{\partial z_i}{\partial z_{i-1}} \]

- Use \(g_i \) to compute gradient of parameters

\[g(w_i) = \frac{\partial z}{\partial z_i} \frac{\partial z_i}{\partial w_i} = g(z_i) \frac{\partial z_i}{\partial w_i} \]
Backpropagation for a sequence of functions

• Each “function” has a “forward” and “backward” module

• Forward module for f_i
 • takes z_{i-1} and weight w_i as input
 • produces z_i as output

• Backward module for f_i
 • takes $g(z_i)$ as input
 • produces $g(z_{i-1})$ and $g(w_i)$ as output

$$g(z_{i-1}) = g(z_i) \frac{\partial z_i}{\partial z_{i-1}} \quad g(w_i) = g(z_i) \frac{\partial z_i}{\partial w_i}$$
Backpropagation for a sequence of functions
Backpropagation for a sequence of functions

\[g(z_{i-1}) \]

\[g(w_i) \]

\[f_i \]

\[g(z_i) \]
Chain rule for vectors

\[\frac{\partial a}{\partial b} = \frac{\partial a}{\partial c} \frac{\partial c}{\partial b} \]

\[\frac{\partial a_i}{\partial b_j} = \sum_k \frac{\partial a_i}{\partial c_k} \frac{\partial c_k}{\partial b_j} \]

\[\frac{\partial a}{\partial b}(i, j) = \frac{\partial a_i}{\partial b_j} \]

\[\frac{\partial a}{\partial b} = \frac{\partial a}{\partial c} \frac{\partial c}{\partial b} \]
Loss as a function

conv \rightarrow subsample \rightarrow conv \rightarrow subsample \rightarrow linear \rightarrow loss

filters

filters

weights

label
Beyond sequences: computation graphs

• Arbitrary *graphs* of functions
• No distinction between intermediate outputs and parameters
Computation graph - Functions

- Each node implements two functions
 - A “forward”
 - Computes output given input
 - A “backward”
 - Computes derivative of z w.r.t input, given derivative of z w.r.t output
Computation graphs
Computation graphs
Computation graphs
Computation graphs
Neural network frameworks